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Abstract

Dilute gas-particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid
drag, and particle—particle collisions. However, the direct numerical solution of the kinetic equation is intractable for most
applications due to the large number of independent variables. A useful alternative is to reformulate the problem in terms
of the moments of the velocity distribution function. Closure of the moment equations is challenging for flows away from
the equilibrium (Maxwellian) limit. In this work, a quadrature-based third-order moment closure is derived that can be
applied to gas-particle flows at any Knudsen number. A key component of quadrature-based closures is the moment-inver-
sion algorithm used to find the weights and abscissas. A robust inversion procedure is proposed for moments up to third
order, and tested for three example applications (Riemann shock problem, impinging jets, and vertical channel flow).
Extension of the moment-inversion algorithm to fifth (or higher) order is possible, but left to future work. The spatial
fluxes in the moment equations are treated using a kinetic description and hence a gradient-diffusion model is not used
to close the fluxes. Because the quadrature-based moment method employs the moment transport equations directly
instead of a discretized form of the Boltzmann equation, the mass, momentum and energy are conserved for arbitrary
Knudsen number (including the Euler limit). While developed here for dilute gas-particle flows, quadrature-based moment
methods can, in principle, be applied to any application that can be modeled by a kinetic equation (e.g., thermal and non-
isothermal flows currently treated using lattice Boltzmann methods), and examples are given from the literature.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of gas-particle flows is complicated by the wide range of phenomena that can
occur in real applications [3,11,20,23-25,37,57,60,61,63,69]. In the absence of the gas phase, the particles
behave as a granular flow. In the dilute limit, a granular flow is dominated by binary collisions and can be
described by a kinetic equation [14] (i.e., it is a granular gas). On the other hand, in the dense limit sustained
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particle—particle contacts are dominant and the (local) kinetic description breaks down. As in rarefied gas
dynamics [13], the dilute limit can be parameterized by a dimensionless number (Knudsen number, Kn) that
represents the importance of particle—particle collisions relative to free transport. In the limit of small Knud-
sen number, collisions are dominant and the particle velocity distribution function is very near the equilibrium
(Maxwellian) distribution. In the equilibrium limit, it is thus possible to describe a dilute granular flow by
velocity moments up to second order (the so-called hydrodynamic limit [38]). For larger Knudsen number,
the equilibrium distribution is no longer a good approximate and, eventually, one must solve the Boltzmann
kinetic equation to adequately capture the flow physics of a non-equilibrium granular gas (as is done for rar-
efied gases [4,13,52]). For wall-bounded granular gases, non-equilibrium effects can be important near the
walls even at small Knudsen numbers because the velocity distribution function is composed of incoming
and outgoing particles with velocities far from equilibrium (e.g. a bimodal distribution can be observed near
the walls).

Adding the fluid phase introduces new physics, the most important of which is the fluid-particle drag term.
For an isolated particle in a uniform fluid, the particle Reynolds number (Re,) determines the net force of the
fluid on the particle. For gas-particle flows with moderately large particles, we usually have (Re, > 1) and the
drag force is parameterized by a drag coefficient [58]. Another important parameter in fluid-particle flows is
the Stokes number (S?), which is the ratio of the characteristic response time of the particle to the character-
istic time scale of the fluid flow. For example, in a particle-laden impinging-jet flow the value of the Stokes
number will determine whether or not the particles cross the impingement plane. If the Stokes number is suf-
ficiently small (St < 1), the particles will not cross the plane and will have nearly the same velocity as the fluid.
On the other hand, for very large Stokes numbers, the particles barely “feel” the fluid and thus will continue
directly through the impingement plane. Note that if the flow is dilute, particles can readily cross the plane
without risk of collision with other particles, i.e., particle trajectory crossing (PTC) will occur. Locally (i.e.,
at the impingement plane) the velocity distribution function will be bimodal (even when particles do not col-
lide) with values corresponding to the velocities originating from each side of the plane. More generally, par-
ticles with finite Stokes number will tend to accumulate in regions of the fluid flow with small vorticity [60]. In
turbulent flows, such regions correspond to local (time-dependent) impingement zones [19]. Because of the
complex particle physics in such regions, which lead to particle velocity distributions far from Maxwellian,
equilibrium closures for the moment equations will fail. For example, an equilibrium closure for the velocity
moments will predict delta-shocks [6] in the local number density when, in fact, no such behavior is present in
the flow [20]. In order to avoid such unphysical behavior, it is necessary to extend the moment closure to han-
dle PTC, which is ubiquitous in turbulent gas-particle flows.

The range of Knudsen, Reynolds, and Stokes numbers observed in real gas-particle flows is very wide, and
hence it is difficult to find a computational model that will work for all applications. Moreover, even in a given
flow, the ranges of these numbers may be large due, for example, to local dense and dilute regions or to a wide
range of gas-phase velocities. In general, a model for dilute gas-particle flow must include both the kinetic
description for the particle phase and a coupled momentum balance equation for the gas phase (i.e., two-
way coupling). Nevertheless, the principal modeling challenge is the treatment of the kinetic equation and,
therefore, we will consider only one-way coupling (i.e., the fluid velocity is given) in this work. Furthermore,
we will consider examples where the Stokes number is large enough that velocity fluctuations (i.e., due to gas-
phase turbulence) can be neglected [57]. These assumptions will allow us to isolate the critical role of non-equi-
librium effects in moment closures, and to investigate their treatment using quadrature-based moment clo-
sures. We should note, however, that because the coupling with the fluid phase occurs at the level of the
moments, the conclusions drawn in this work have direct implications on the closures used in fully two-
way coupled moment methods (e.g., found using the kinetic theory of granular flow [3]).

The quadrature method of moments (QMOM) was introduce by McGraw [49] as a closure for population
balance equations (PBE) involving a number density function (NDF) f(¢,¢) with independent variable ¢ rep-
resenting the particle volume or mass. For example, in an aerosol ¢ might correspond to the droplet volume,
which evolves in time due to physical processes such as condensation, evaporation, aggregation, and breakup.
The PBE that governs the NDF is then an integro-differential equation that is difficult to solve numerically.
In practice, the principal quantities of interest for comparison with data are the moments of the NDF
defined by
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(1) = /0 e i de.

Thus, a closure of the PBE that can accurately predict the lower-order moments is often sufficient. In most
cases, however, the moment equations derived from the PBE are not closed (see [43] for a discussion of mo-
ment closures) and a closure step is required. Using QMOM, the moments are expressed in terms of a finite set
of N weights n,(¢) and N abscissas &,(¢), defined such that [49]

N
mp =Y n,& fork=0,1,...,2N — 1.
o=1

For higher-order moments (i.e. £ > 2N) and non-integer moments, the quadrature weights and abscissas pro-
vide a consistent closure. For example, let g(&) be a smooth function of ¢&. The QMOM approximation of the
moment involving g is then

| eor@de~ Y nse).

In a similar manner, all of the terms in the moment equations for m; with k = 0,1,...,2N — 1 can be closed,
resulting in a closed system of 2N equations.

A key component of QMOM is the inversion algorithm used to find the weights and abscissas from the
moments. A direct nonlinear solve is poorly conditioned (and gets worse for increasing N); however, the prod-
uct-difference (PD) algorithm introduced by McGraw [49] overcomes this difficulty by replacing the nonlinear
solve with a computationally efficient eigenvalue—eigenvector problem that is well conditioned even for large
N. Using the PD algorithm, it is possible to solve for a spatially dependent NDF using standard flow codes to
transport the moments [26,47,48,65,71]. Moreover, even with highly coupled and nonlinear aggregation ker-
nels, good accuracy for the lower-order moments can usually be attained with N = 4 nodes [48].

Unfortunately, the PD algorithm only works for uni-variate distribution functions, but not for bi-variate
(or higher) NDF where (&, 1) depends on two (or more) internal coordinates. In order to overcome this lim-
itation, one can work directly with transport equations the weights and abscissas (direct QMOM [46] or
DQMOM), which works well when ¢ and 7 represent passive scalars (e.g. droplet volume and surface area
[27]). The DQMOM approach has also been applied to polydisperse gas—solid flows [23] to describe the fluid
dynamics in the presence of multiple particle sizes. However, in that application the particle velocity is
assumed to be in the equilibrium (Maxwellian) limit so that only the mean particle velocity (albeit conditioned
on particle size) suffices to describe the flow dynamics. For non-equilibrium gas—solid flows (such as those con-
sidered in this work), the velocity distribution function can deviate strongly from the Maxwellian form, and
higher-order velocity moments are required to close the transport equations. In principle, DQMOM can be
used with the velocity moments to rewrite the moment transport equations in terms of transport equations
for the weights and abscissas [29]. In the absence of collisions, the resulting transport equations for the velocity
abscissas [29] have the form of the pressure-less gas dynamics equation [6], and each abscissa evolves indepen-
dently of the others. Although the DQMOM formulation for velocity works well in most of the flow domain,
it fails at “singular” points where the velocity abscissas change discontinuously [19] (e.g., the PTC points).
Remarkably, a quadrature-based moment closure for the velocity distribution function is robust at such points
[19,20]. However, for multi-dimensional velocity distributions (e.g. three-dimensional phase space), the key
challenge of inverting the moments to find the weights and velocity abscissa remains.

The kinetic equation for the velocity distribution function is used in many applications besides gas-particle
flows [4,9,12,13,16,17,33-35,39,44,45,52,55,56,67], and thus there have been many computational methods
developed to find approximate solutions. In the context of quadrature methods, the most closely related tech-
niques are those based on “multiphase” or “multi-branch” solutions to the kinetic equation (i.e. without the
collision term in the Boltzmann equation) [9,22,32,33,39,40,44,45,55,67]. (See [56] for a recent review.) In fact,
the quadrature formula used in moment-based methods [56] for these applications to relate the weights and
abscissas to the moments is the same as in QMOM; however, in the literature on multiphase solutions a direct
nonlinear solver is used (and is therefore limited to small N) instead of the PD algorithm. A more significant
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difference between QMOM and multiphase solutions is that the latter are designed to yield exact solutions to
the kinetic equation without collisions, while the former provides approximate solutions to the kinetic equation
with collisions.' Despite these differences, the difficulty of representing multiple velocities generated by the spa-
tial transport term is shared by many applications of the kinetic equation.

At present, there are two classes of methods that can be used to find accurate solutions to the kinetic equa-
tion: (i) direct solvers that discretize velocity phase space [4,10,12,31,51,52]; (ii) Lagrangian (or ray-tracing)
methods [2,6,21,56,61,69]. However, the computational cost of using either of these methods in many appli-
cations (such as fluid-particle flows) is prohibitive. Moreover, in most applications we are not interested in
knowing the exact form of the velocity distribution function, rather knowledge of its lower-order moments
is sufficient. For these reasons, there is considerable motivation to develop predictive moment closures whose
accuracy can be improved in a rational manner. Quadrature-based moment closures fall into this category
because, in principle, the accuracy of these closures can be improved by increasing the number of quadrature
nodes.? Nevertheless, as mentioned previously, a key technical challenge with quadrature-based moment clo-
sures is the development of efficient moment-inversion algorithms for multidimensional velocity distribution
functions. We should note that because the weights are non-negative and the abscissas are located in velocity
phase space, a quadrature-based moment method provides an adaptive® discretization of velocity phase space
that is consistent with the underlying moments. Compared to direct solvers, this discretization is very sparse
(equal to the number of nodes). An important open question is thus to determine the range of accuracy that
can be achieved using quadrature in comparison to direct solvers. In this work, we address the problem of
finding a moment-inversion method for velocity moments up to third order, and leave the question of
increased accuracy using more nodes to future work.

The remainder of the paper is organized as follows. In Section 2 we introduce the kinetic equation for dilute
gas-particle flows. In Section 3 we present the moment transport equations up to third order derived from the
kinetic equation. Section 4 describes in detail the moment-inversion method for the velocity moments for one-,
two-, and three-dimensional velocity phase space (using 2, 4, and 8 nodes, respectively) and compares the
quadrature formulas to other methods available in the literature. In Section 5 we present the kinetic-based
numerical algorithm used to solve the moment equations. Section 6 is devoted to example applications to test
the numerical implementation. Finally, in Section 7 conclusions are drawn and the key characteristics of the
proposed moment method and numerical algorithm are discussed.

2. Kinetic description of dilute gas-particles flows

Consider the following kinetic equation for the velocity distribution function f(v;x,¢) of dilute monodis-
perse solid particles in a gaseous flow [57]:

6J+W-%f+&-0@+6w<ﬁ§>=ﬁ7 M

p

where v is the particle velocity vector, g is the gravity force, F is the drag force from the gas phase acting on a
particle, m,, is the particle mass, and C is the particle—particle collision term. In this work, we will assume that
the collision term is closed. For example, using the Bhatnagar—Gross—Krook (BGK) approximation [5], the
collision term becomes

C= (1), @)

! More generally, multiphase solutions do not consider interactions between different branches or cases where the velocity distribution
function is continuous in velocity (e.g. Maxwellian). Mathematically, the form of the kinetic equation in these applications is at most first-
order derivatives in the independent variables [56]. Collisions and other non-local interaction terms (which are not first order) couple the
velocity abscissas in a non-trivial manner [29,46].

2 While this has been clearly demonstrated for “passive” moments (e.g. volume) [27,48,49], it remains to be shown for the velocity
moments.

3 The discretization is adaptive because it changes with the moments.
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where 7 is a collision time constant and f, is the equilibrium (Maxwellian) distribution. In d dimensions, f.q is
given by

0 TR
ﬁJV)=-—JE3;EGHJ<—DL—£&—>7 G)

(2TCGeq 2O-eq

where M* = [ fdv is the particle number density (zero-order moment), U, and g, are the mean particle
velocity and equilibrium variance, respectively. For real particles, collisions are usually inelastic (i.e. o¢q is
not conserved). However, in this work, we will treat g, as a conserved quantity.* Note that the Knudsen
number is proportional to the collision time 7, so that the velocity distribution function is equal to fi; when
Kn = 0. In the opposite limit, the particles are collision-less and the velocity distribution function will be
determined by the remaining terms in Eq. (1) (and hence can be very far from equilibrium).

For dilute gas-particle flows, the drag force can be approximated by

3m,p
F(U;,v) = =22 Cy|Up — v)|(Ur — 4
(Ur¥) = 22t Callr =V (U =) 4)
where Ug(x, ?) is the fluid velocity (assumed to be known in this work), d, is the particle diameter, p; the fluid
density, p, the particle density, and Cy4 the particle drag coefficient given by the following correlation due to
[58]:
24
Cq=——(1+0.15R"™ 5
o= g (1 0.15RG) (5)
with Re, = |Uy — v|d,/v¢ being the particle Reynolds number where vt is the fluid kinematic viscosity. In some
cases, we will also use the simpler Stokes drag coefficient: Cq = 24/Re,. The drag term can then be expressed as

F(Up,v) =2 (U; — v), (6)
Tp

where 1, = ppdf) /(181). The particle Stokes number can then be defined as St = t,,/7; where 1 is the charac-
teristic time for the fluid velocity U;. For very small St the particles will follow the fluid (v &~ Ur) and hence
they will not collide in dilute flows. Moreover, in this limit, flow-induced particle segregation is not observed in
turbulent flows. On the other hand, for very large St the particles respond very slowly to changes in the fluid
velocity and act as a granular gas. In between, for St ~ 1 flow-induced segregation in turbulent flow is signif-
icant and has a strong effect on collision statistics [24,60]. In any case, the Stokes number has a strong effect on
the velocity distribution function, which can be described by Eq. (1), and makes the behavior of gas-particle
flows significantly different than molecular gases (i.e. St = c0). Note that drag can be a source or a sink for o,
depending on how the particles respond to fluid velocity fluctuations. However, at large St the drag will lead to
dissipation of .4 because fluid velocity fluctuations will have no effect on the particle velocity fluctuations [57].
In practice, due to the complexity of the kinetic description, the velocity distribution function must be
found using a Lagrangian particle tracking code (or DSMC) coupled to a turbulent flow solver for Us.
Although accurate, this solution method is rather expensive and subject to statistical errors due to finite sam-
ple sizes. Our interest here is to approximate solutions to Eq. (1) for dilute gas-particle flows
[11,24,25,60,63,69], such as the vertical channel flows described in [37,57,61], using Eulerian moment methods.
However, the numerical method developed in this work can, in principle, be used for other physical situations
that can be described by Eq. (1) (e.g., dilute sprays [66]). For example, neglecting the terms involving the grav-
ity and drag force, Eq. (1) is the simplest version of the Boltzmann equation, for which there exists an exten-
sive literature on numerical methods for its solution in various limiting cases [6,13], including small-scale
gaseous hydrodynamics [35] and the semiconductor Boltzmann—Poisson system [12]. We will thus use the Rie-
mann shock problem from gas dynamics [4,16,52,62] as one of the test cases in Section 6. Another important

4 Inelastic collisions can be introduced using a restitution coefficient 0 < e < 1[38]. Then, in the moment equations, one simply replaces
Geq With €?a¢q. For example, the decay rate for o4 is then equal to (e2 — 1)oeq. Isothermal flows can be treated by setting g to a constant
value.
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test case for dilute gas-particle flows is impinging particle jets [19,20] with or without collisions, which is a
model for particle trajectory crossing (PTC) at finite Stokes numbers. For this example, the velocity distribu-
tion function is locally bimodal and hence far removed from f.,. Moment methods developed for flows near
equilibrium (i.e. collision dominated or small Kn) cannot be used to describe PTC because they cannot handle
locally multi-valued velocities. However, quadrature-based moment closures perform well for this case in the
collision-less limit [19,20]. As noted in the Introduction, the kinetic equation (i.e. without collisions) also
appears in other applications such as geometric optics [56].

3. Moment transport equations

In this work we develop a third-order moment closure using quadrature. In three dimensions, the 20
moments up to third order will be denoted by

3 _ 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
w _(M 7M17M2’M3’M117M127M137M227M23’M337M1117M1127M1137M1227M123’M133’
3 3 3 3
M2227M2237M233’M333)'

The moments are found from the velocity distribution function by integration:
Moz/fdv7 M} :/v,-fdv,
(7)
M = /uivjfdv, M, = / vv0if dv.

Thus the transport equations for the moments can be easily found starting from Eq. (1) (repeated indices
imply summation):

oM’ oM 0
ot Gx[ o
oM! OM;,
i Vo »MO Dl
o xS TR
N 0 (8)
ij ik _ 1 1 S 2
o T SM Mt 0wty m o) Dy
oMm?, oMt 1
ijk ijkl 2 2 2 3 3
o e &My + 8;Miy + &M +— (dije = M) + Dy,
where the final terms on the right-hand sides are due to drag.
The moments of the equilibrium distribution are defined by
A = M°(3;Upi + 03U + 03 Upi) 0eq + M Uy Up, Upy, 9)

where the mean particle velocity is U,; = M} /M°. Note that the collision term only affects directly the second-
and third-order moments, moving them towards the equilibrium values. Nevertheless, the collisions affect all
moments indirectly through the transport terms. The unclosed terms in the moment transport equations (M j;k,,
D}, D;; and D},) are closed using quadrature as described in Section 4.

Of particular importance is the treatment of the spatial fluxes, which are represented by a kinetic descrip-
tion [8,18,53,54]. For example, the flux term for the zero-order moment is separated into two contributions:

0 00
_0 40 = ,. dv, duy ) dv, ,- dv, duy ) du,. 10
M; =0, +0, /mv(/f(V)v Uk) v+/0 v(/f(V)v vk> v (10)

The fluxes for the higher-order moments are constructed in an analogous manner. The quadrature-based
closure of the right-hand side of Eq. (10) is discussed in Section 4.2.
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4. Quadrature-based third-order moment closure

As noted in the Introduction, quadrature-based moment methods distinguish themselves from other
moment methods by the use of quadrature weights and abscissas to model unclosed terms in the moment
transport equations. Thus, when developing a quadrature method, an important task is to define the algorithm
for computing the weights and abscissas from the moments. In one-dimensional systems, this is easily accom-
plished using the PD algorithm [49]. The extension to higher dimensions is less straightforward and is the main
objective of this section. Here we limit ourselves to quadrature formulas for moments up to third order, and
use one-dimensional product formulas [59]. Thus, the number of quadrature nodes in each direction of veloc-
ity phase space will be two.

4.1. Relationship between moments and quadrature nodes

Let d € (1,2,3) denote the number of phase-space dimensions, and define § = 2¢. Let V' = [(n,, U,)] with
a € (1,...,pB) denote the set of weights and abscissas for the f-node quadrature approximation of /. Note that
the set of quadrature nodes ¥ contains (1 + ) unknowns (i.e. f weights, and f d-component velocity vec-
tors). To find the components of Vj;, we work with the velocity moments up to third order (for
i<j<kel,...,d), which are related to the quadrature weights and abscissas by

B B
Mozznm M,] :ZnaUxia
a=1 =1

B B (11)
M= nUuUy, My, = n,UuUyUy.
a=1 a=1

In the following, we will let W denote the set of third-order moments in d dimensions. The principal objective
of this section is to describe an algorithm for finding V5 from W*. The inverse operation (finding W from V)
is Eq. (11), which we will refer to as projection for reasons that will become apparent later. In general, it will
not be possible to represent all possible moment sets in #* using weights and abscissas in V5. We will therefore
define the set of representable moments as W ¢ w.

4.2. Quadrature-based closure of the moment transport equations

The moment transport equations derived in Section 3 contain unclosed terms. Using quadrature, these
terms can be expressed in terms of the weights and abscissas:

p

D1 = &Fiom (12)
a=1 mp
2 " n,
D,-jZZm*(U,-“Fﬂ—kF,-aUﬂ), 13
a=1 p
b n
DiSjk = Z m_a(UmU/'dFka + FiuUjnUsy + Ui 1, Usy), (14)
a=1 3
I
M;‘k! = ninacU/'acUkocUlfm (15)
a=1
where
F, = F(Uy,U,) = ™ (U, - U,) (16)

o

and 7, is the characteristic drag time for node o.
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Quadrature is also used to write the spatial fluxes in terms of the weights and abscissas [19,20]. The fluxes
are based on the kinetic description given in Eq. (10) using a delta-function representation of the distribution
function:

B
flv)= ané(v—U“). (17)
=1
For example, the negative and positive contributions to the flux terms for the zero-order moment are
expressed as

ny,max(0, U,). (18)

B
o=1

B
o = an min(0,U;) and QO =
a=1

Likewise, the fluxes for higher-order moments have analogous forms [19,20]. This flux definition has impor-
tant ramifications on the numerical algorithm used to solve the moment transport equations. For one thing, it
is obvious that the fluxes are tightly coupled to the quadrature algorithm because the latter determines the
abscissas. In particular, the fluxes will vary smoothly in space only if the abscissas are smoothly varying. It
can also be noted that because the fluxes are written in terms of a finite set of velocities, the closed model equa-
tions do not contain gradient-diffusion terms as is usually the case in other moment methods. Moreover, be-
cause of the form of the fluxes, there is no advantage gained by rewriting the transport equations in terms of
the central velocity moments (i.e. moments of the fluctuating velocity).

Finally, we should note that fluxes as defined above are not guaranteed to produce moments that can be rep-
resented by the proposed quadrature algorithm (i.e. the moments lie in W but not necessarily in W, and only
the latter can be represented by the weights and abscissas). For this reason, after advancing the moments due to
the fluxes (or any other process that does not remain in W), it is necessary to project the moments back into
W4t This is accomplished simply by using the moments to compute the weights and abscissas, and then using
Eq. (11) to recompute the moments. We will refer to this operation as a projection step.

Our principal objective is to show that if

(i) M°>0 and (i) forallie(l,...,d) M>>M"/M,

then V4 can be found from #* in a well-defined manner. For clarity, we will first describe the one-dimensional
case with d = 1 and two nodes: f§ = 2. The higher-dimensional cases (ff = 4 and 8) are constructed in a similar
manner, and are discussed later.

4.3. Two-node quadrature: V, from W'

For the one-dimensional case, we begin by defining the mean particle velocity:
U, =M} /M, (19)
and the velocity variance:

oy = o> =M, /M’ - U? (20)

pl’
so that g.q = ¢*. With a two-node quadrature approximation, we introduce a new variable X defined by a lin-
ear transformation of v;>:
X = (v —Up,)/o sothat vy =dX + U,. (21)

Note that Xis a scalar representing the normalized distance (in velocity phase space) from the mean velocity in
the direction of the velocity fluctuations.
Denoting the four normalized moments with respect to X up to third order by

Wl* = (m07m17m2’m3)7

5 Introducing X when d = 1 is superfluous. However, for consistency with higher dimensions, we do so anyway.
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it is straightforward to show that these moments are related to the velocity moments by
m'=1, m'=0, m* =1, m=hU,oc,M;/M°), (22)

where / denotes a function of its arguments. This function is rather long (see Appendix A), but can easily be
written out starting from the definition of X in terms of v; given in Eq. (21). Likewise, the weights and abscis-
sas in X phase space, denoted by V3 = [(n},X,),a € (1,2)], are related to V, by
n,=Mn and U,=0X,+U,. (23)
Thus, we can compute ¥ in terms of W', and then use Eq. (23) to find V.
The moment set W' is related to V5 by
2 2

2
m® = Zn;, m' = Zn’;Xx, m* = Zn’;Xi, m = Zn;Xi (24)
a=1

=1 a=1 =1

Note that W!* contains four moments. Thus, if W'* is known, we can invert Eq. (24) to find the four unknowns
in V3, from which we can compute V', using Eq. (23). Using two-node quadrature [49], the moments of X can
be easily inverted to find V3:

1-2p\"?
n=0.5+7, X1:—(1+2;) ,

12 (25)
L 05—y, Xy (LEZ
n, = V. Vs 2 = 1_2']) )
where (—1/2 <y < 1/2)
m*/2
[(m*)” + 4]

It is then possible to compute W', defined by
W= (MO,M%,M%I,M?“),
using ¥, in Eq. (11). These operations can be expressed as
W W o Vs o V) e W
Note that in the case of d = 1 all four moments in W' can be exactly reproduced by V3. This will not be the
case for higher dimensions.

4.4. Four-node quadrature: V4 from W’

In two dimensions, the set of 10 moments up to third order is defined by
2 0 1 1 2 2 2 3 3 3 3
we= (M 7M17M27Mll’M12>M22’M1117M1127M122’M222)7

and we seek to define a four-node quadrature based on these moments. Again we begin by defining the mean
particle velocity vector:

M]/MO

U, = [M} 0], (27)
/M

and the velocity covariance matrix:

Mﬁ/MO_Uf)l M%z/MO_UplULﬁ

; (28)
M%z/MO_UplUlﬁ M%z/MO_ng

oy = loy] =

so that g.q = (011 + 022)/2.
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The next step is to introduce a linear transformation A to diagonalize o,.° The choice of the linear trans-
formation is not unique,’ but for reasons that will be described later, we choose to use the Cholesky decom-
position defined such that L'L = ¢, and L is upper triangular:

Lo | eulod | (29)
0 (02 —0}/ou)
With this choice we set A = L and introduce a two-component vector X = [X,X,]" defined by
X=A"'(v-U,) so thatv=AX+U,. (30)

If we denote the first four moments of X; by m*, k € (0,1,2,3); then they are related to the velocity moments
by

m'=1, m =0, m' =1, m =h(A U, M;,/M°, ... .M3,/M"), (31)

where h; depends, in general, on all 10 third-order velocity moments (see Appendix A).
Using the two-node quadrature formulas (Eq. (25)), the moments of X, can be inverted for i € (1,2) to find
(n(1), 12, X (1), X )2

1_2 . 1/2
ney = 0.5+"/i7 X(,-)] = <1 +23;’) ,

1429\ ()
nip =05-7, Xp= =2,
where (—1/2 <y, < 1/2)
3/2
Vi = @7/1/2 (33)
[(m7)” + 4]

The locations of the nodes before and after the linear transformation are illustrated in Fig. 1 for a Maxwellian
distribution with zero mean velocity.

The four-node quadrature approximation is then defined using the tensor product of the one-dimensional
abscissas as

Vi= [0, Xy, X)), (03, Xy, X 22), (03, X (172, X 201), (4, X (1)2, X 212)], (34)
where the (as yet) unknown weights #; must obey the linear equations

ny +ny = no -

ny— Ny =" — nep
= n; + nj; =noe . (35)

* *
ny +ny = nay

* *

ny +ny, = nay
* *

ny+n3 =npey

* *
ny +ny = npp

The equations on the left-hand side are the weight constraints for each node, and the equations on the right-
hand side are a linearly independent set. The right-hand sides of Eq. (35) are known, and have the property
that nay +nae = 1 and naoy + nep = 1.

The linear system in Eq. (35) has rank three. We must therefore add another linear equation to define the
four weights. For this purpose, we will use the cross moment m?, = (X,X,) = 0, the value of which follows
from the definition of A. In terms of the weights and abscissas in Eq. (34), we have

® Strictly speaking, it is not necessary to diagonalize the covariance matrix. However, if this is not done, it can be shown that certain
realizable moment sets lead to negative weights.

7 The transformation is not unique because we can always introduce an orthogonal matrix C with the property CT = C~! such that
LTCTCL = o. The linear transformation can then be defined as A = (CL)". There are an infinite number of choices for C, e.g., the
rotation matrices.
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Original coordinate system
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Fig. 1. Four-node quadrature representation of the two-dimensional equilibrium distribution function fq(u, v) (equally-spaced contours)
in velocity phase space (top) and in transformed phase space (bottom). The abscissas are denoted by the four filled circles. For this example
the weights are all equal to M°/4.

XanXenny +XanXepns + XapXeiny + XapXepny =0. (36)

Recall that the abscissas (X ;),) are known; hence, this expression is linear in the weights (n}), and we can use it
with Eq. (35) to form a full-rank linear system. The resulting system can be inverted analytically to find

ny = napnen = (0.5+7,)(0.547,)
ny = naynee = (0.5 +7,)(0.5 = 7,)
ny = napnen = (0.5 = 7,)(0.5+7y,)
ny = napnp = (0.5 =79)(0.5 = 7,).

(37)

Note that these weights are always non-negative.
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In summary, the weights and abscissas in V4 are found from those in V', using Eq. (30) to invert the abscis-
sas and n, = M°n’. The eight moments controlled in this process are

% (o0 1 1 .2 2 2 3 3
W= = (m",my,my, my, my,, my, my, m).

Note that the two third-order moments in W>* are a linear combination of the four third-order moments in
W?. Hence, W*" is a subset of W? containing eight independent moments (instead of 10). However, given mo-
ments in W2 it is straightforward to project them (using the weights and abscissas) into W', i.e., the eight-
dimensional moment subspace that can be represented by V* is W?'. The overall procedure can be represented
as

W — W s Vi e Vy s W C W2,

where a projection step is used to define W>. We will return to this point when discussing the numerical imple-
mentation below.

4.5. Eight-node quadrature: Vg from W?

In three dimensions, the set of 20 moments up to third order is >, and we seek to define a eight-node quad-
rature based on these moments. We begin again by defining the mean particle velocity vector:

M /M°
Uy = | Mi/m° | (38)
My/M°
and the velocity covariance matrix:
M%1/M0_U§1 M%z/MO_UplUPZ M%,%/MO_UPIUM
oy = | ML/M' —UpnUpyp  M3y/M° = UL, My /M° = UpnUy |, (39)
M%3/MO_UP1UP3 M%s/MO_UPZUlﬂ M%}/MO_Ulzﬁ

so that Oeq = ((711 + o + 033)/3.
The eight-node extension of the procedure described above uses the three-component vector X = [X | X,X;
defined by

]T

X=A'(v-U,) sothatv=AX+U, (40)

where A = L' is again defined in terms of the Cholesky decomposition of ¢ :

1/2 12 12
o 012/04) o13/01
1/2 011023—0130
0 Gy — 02 o 11023—013012
L= ( 2 12/ 11) 01{2(011022—0%2)1/2 . (41)
2\ 1/2
2 _ (o11023-013012)
0 0 (033 613/611 <r11(!711!722*6%2))

As before, the two-node quadrature formulas (Eq. (32) with i € (1,2,3)) are used to find the weights and
abscissas in each direction. The eight-node quadrature approximation is then defined using the tensor product
of the one-dimensional abscissas by

Ve = [(n}, Xy X, X o), (m5: X 192, Xy, X ayn)s (3, X )1, X 202, X 31, (1 X (172, X 22, X 3n).
(n5, X ()1, X 21, X 3)2), (5, X (172, X 21, X 3)2), (17, X (1)1, X (202, X (3)2) (11, X (192, X (202, X (3)2)]- (42)
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The linear system for the weights:

ny+ny +ns +ng = na

1y + g+ g+ ng = ngy ny +ny 45+ ng = nay

ni+nk+ni4n =noy ny+n+ni+n;=1—nqy

pha e T )
ny+ny 4+ ng =np)p 3 Any ng g =1 —ne)

ni +ny+ni+ng=ng) ns+ng+n;+ng=1-—ng),

* * * *
ns + ng + n; +ng =nap

where n(;; +ng = 1,i € (1,2,3); has rank 4. Thus, in general, four additional equations are required to deter-
mine 7. Three of these equations come from the second-order moments (X.X):

XapXonny + XapXopny + XanX opny + XX epny + X )1 X 2105
+ XX 116 + X (1)1 X 22 + X (12X ong = mi, = 0,

XanXapmy + X apXapny + XapnXanny + XapX gping + X)X ¢pns
+ X (12X @ang + XX 3215 + X 12X 3ang = miy =0,

XenX@nny +XopXanm +XepXanny +XepX anng + XX epns
+ XX (3206 + X (22X 3105 + X 22X (315 = miy = 0;

(44)

and the fourth equation comes from the third-order moment (X, X,X;)®:
XapX@nX anng + X pX 01X )y + X 01X 02X @175 + X 02X 02X @)1 + X (11X 2)1X (32715
+ X apX X apng + XX 2pX 3207 + X (12X 22X 3121
= my,. (45)

The moment m7,, and the abscissas are known. The linear system of eight equations (Egs. (43)—(45)) can be
solved analytically.
In order to ensure that the weights are non-negative, we define

Phay = mifa(l — a)b(1 = b)e(1 - )], (46)
where a = ngy = 0.54 7y, b =np) =0.5+7y,, c =na) = 0.5+ 7;. Then, if mi,, = 0, we let
P13 = Min[pjys, abe, (1 —a)(1 —b)e, (1 —a)b(1 —¢),a(1 — b)(1 —¢)]. (47)

Otherwise, if m3,; < 0, we let

Pro3 = —min[—piy,, (1 — a)be,a(l — b)e,ab(l —¢), (1 —a)(1 —b)(1 —¢)]. (48)
The weights are then given by

ny = abc — py;,

ny = (1 —a)bc + pyos,

ny =a(l = b)c+ piy,

ny = (1=a)(1—>b)c—pp;,

nsy = ab(l —¢) + ps,

ng = (1—a)b(l —c) — pps,

ny =a(l = b)(1 —c) = py,

ng = (1=a)(1=5)(1 —c)+ppy.

(49)

8 Obviously this choice is not unique. Any linear combination of the seven uncontrolled third-order moments could be used: m%lz, m?l 3
M3y, Mlyy, M35, M3y3, Mmis3. The choice of m3,; has the “advantage” that is symmetric in the indices and it is easy to control the resulting
weights so that they are non-negative.
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Note that for cases where p,,; # pj,;, one of the weights will be zero. Hence, in order to ensure non-negative
weights, we essentially drop Eq. (45) and set the offending weight to zero. The remaining seven weights are
determined by the other seven linear equations.

In summary, the 14 moments’ controlled with eight-node quadrature are

3 _ 0 1 1 1 2 2 2 o o 5 3 3 3 3
W= = (m®,my, my, my, my, my, my, miy, My, ms, my, my, my, nyss).
The overall procedure can be represented as
W = W o Vo Vg W C W,

where a projection step is used to define #*!. Similar to two dimensions, only four of the 10 third-order mo-
ments appear in W>*. These four moments are independent linear combinations of the 10 third-order velocity
moments.

4.6. Comparison to other methods

In the two-node quadrature method of [19,20], a different approach was used to fix the weights and abscis-
sas. The difference lies essentially in which moments are controlled. In [19,20] the eight moments

(M07M}’M;’M;7M%1’M§27M§37M?11 +M§22 +M§33)

were used. Note that this moment set does not include cross moments of second order (e.g. M?,). In contrast,
in the new formulation the covariance matrix is exactly reproduced. This of course comes at the expense of
transporting more moments (20 instead of eight).

Note that in the previous method the number of moments is equal to the number of unknown weights and
abscissas. It might be argued that the new method could be improved for d > 1 because the number of
moments controlled is less than the number of unknowns. For example, if we consider the eight-node case
(32 unknowns), we can observe that the 14 moments in #** do not include all third-order moments. However,
[28] has shown that an “optimal” moment set exists wherein 32 moments, including all moments of third
order, can be used to find the weights and abscissas in V. Likewise, the eight moments in #?* can be aug-
mented by four additional moments: s} ,,, m3,,, m},;,, and mf,,,, to form an optimal set for computing V7.
In practice, the use of the optimal moment sets introduces two new issues. First, the weights and abscissas
must be found numerically by solving a nonlinear system of equations that can be poorly conditioned. Second,
the optimal moment sets contain fourth- and fifth-order moments, all of which would have to be added to W
(i.e., more moment transport equations are needed).

In order to test the feasibility of using optimal moments, we have implemented a nonlinear (NL) solver to
compute /7, using as initial guess the results given in Section 4.4. We found that in most cases considered (e.g.,
the Riemann problem), the NL solver was able to converge (albeit very slowly), but not always. The non-con-
vergent cases typically have weights that are very unequal. However, it was not possible to predict in advance
which moment sets would not converge. In all likelihood, the convergence problems will be more acute for V7§
given the larger number of moments in the optimal set that are not controlled by the new method. Thus, given
that the computational cost is orders of magnitude larger and convergence is not guaranteed, it is unlikely that
a NL solver will provide a computationally efficient method for inverting moment sets. This conclusion is con-
sistent with the findings of [70]. In general, since moment inversion in one dimension is well established and
reliable [49], it will likely be much more fruitful to increase the number of nodes and the order of moments
(e.g. computing f = 3¢ nodes requires fifth-order moments) to achieve greater accuracy.

We should note that moment-inversion method proposed here is very similar in spirit to the method pro-
posed by Yoon and McGraw [70] for aerosol applications (i.e., passive transport of a distribution function).
The principal differences are (1) in [70] they define the linear transformation matrix A in terms of the eigen-
vectors of the covariance matrix, and (2) they compute the weights without attempting to control m3,, (i.e.,

° Only 13 moments are controlled when one weight is null. However, this never occurs for any of the examples considered in this paper.
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their formula is equivalent to setting p,,; = 0). Of these differences, the first is the most important for the
applications considered in this work. We have, in fact, attempted to define A as done by Yoon and McGraw
[70]. However, because the velocity is a dynamic variable (i.e., the spatial fluxes are computed using the veloc-
ity abscissas), the properties of the eigenvectors make them a poor choice for d = 3.'° The fundamental dif-
ficulty is the fact that the eigenvectors of g do not vary smoothly with its components. In other words, small
changes in the correlation structure cause the orientation of the eigenvectors to jump in a discontinuous man-
ner. Thus, at two neighboring spatial locations, the resulting velocity abscissas can be completely different
(even though the moments are continuous). The net result is that the fluxes computed from the abscissas
are then discontinuous, leading to “random” fluctuations in the moments. In contrast, the Cholesky matrix
L varies smoothly with the components of oy and, hence, the fluxes are well behaved. The only known dis-
advantage of using the Cholesky matrix is that it depends on the ordering of the covariance matrix, and is
thus different for each of the six permutations of the coordinates. In essence, one direction is chosen as the
principal direction (i.e., X in Fig. 1). For the examples considered in this work, this turns out not to be a
problem because of symmetry. However, it would be desirable to replace L with a smoothly varying, permu-
tation-invariant linear transform that generates abscissas close to those found using L (if it exists) and still
diagonalizes gy .

Finally, we can note that quadrature-based moment closures bear some resemblance to discrete velocity
models [10,31,51] and to the lattice Boltzmann method (LBM) [30,41], including multispeed off-lattice Boltz-
mann methods [1]; however, the differences are significant. (See Appendix B for more details.) For example, in
LBM the discretizations of velocity space, physical space and time are strongly coupled and determine the
numerical algorithm and properties [41], while quadrature-based moment methods do not directly imply a
physical-space and time discretization scheme. This can be seen from the fact that the moment equations
closed by quadrature are still written as continuous functions of physical space and time. The principal sim-
ilarity between quadrature methods and LBM is that both represent velocity phase space by a discrete set of
velocities. However, a very significant difference between the two methods is that in LBM the discrete veloc-
ities are fixed (depending on the lattice, spatial dimensions, etc. [41]), while in quadrature methods they are
variables (i.e., fields) that vary in space (velocity and physical) and time according to the local flow physics
(i.e., the velocity moments). Another important difference is the number of unknowns available to control
the moments. In LBM, only the weights are used to construct a /inear mapping into the moments [41] and,
hence, the maximum number of moments that can be controlled is equal to the number of weights (e.g.,
the 13-velocity model D3Q13 corresponds to 13 moments up to third order in three dimensions). In contrast,
we have seen that by using quadrature eight velocity abscissas could, in principle, control 32 moments if all the
weights and abscissas were allowed to vary. However, because of the difficulty with inverting the nonlinear
mapping between the moments and the quadrature nodes, the full quadrature procedure is intractable. Nev-
ertheless, the partial quadrature method presented here still allows us to control 14 moments with only eight
nodes (i.e., essentially the same number of moments as with D3Q13). Another difference is that LBM uses a
linear relaxation process to represent collisions [41], while quadrature can be developed for any closed collision
operator (e.g. the Boltzmann hard-sphere collision operator [64]). Finally, we can note that as shown in [19]
quadrature-based methods can be used for arbitrary collision times (or even collision-less cases), while LBM
methods are designed for collision-dominated flows [41]. Based on these differences, we can expect that the
range of flow phenomena that can be captured using quadrature methods will be significantly larger than with
LBM (or with multispeed off-lattice Boltzmann methods [1]).

5. Numerical algorithm

The system of moment transport equations can be solved numerically for three-dimensional problems by
extending the numerical methods described in [19,20]. Here, however, we are interested in solutions that
depend on only one spatial dimension and time. Hence we will describe the method in the context of one-
dimensional fluxes.

19 The problem can be fixed for d = 2 because the eigenvectors can be constructed to be independent of o/5.
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5.1. Transport equations
The examples considered in this work have only one inhomogeneous direction (x;), and we can take gravity

(when needed) to be in the —x, direction. Thus we need to define the numerical scheme in one spatial dimen-
sion (albeit with a three-dimensional velocity phase space) for the following moment equations:

oM" oM,
—t—= ()7
ot Ox;
oM! M3
iy il pl
TR
, , (50)
aMU a]‘4’1l — D2 + C2
ot Ox; i ip
3 4
a1uijk aA/Iijkl _D3 + C3
ot ox, Uk ik

The source terms due to gravity and drag are defined by

5 / Fy FW
p

p

b F, F, Fy
Dz?ik = Z ny |:(m_m - géiZ) UjatUkoc + <m_jf7 - géjZ) Ukac Uioz + (my - g5k2> Uianx:| )
o=1 P P P
and the source terms due to collisions by
MO
C = — (0eq0y = ay),
(52)
1
C?jk = ;(Aijk - M?jk)'
We shall see below that dividing the source terms into two contributions follows naturally from the effects of
gravity and drag on the weights and abscissas (i.e. they are convective processes in phase space).

5.2. The solution algorithm
The steps in the proposed solution algorithm are as follows:

(1) Initialize the weights and abscissa in V; and the moments in W,

(2) Advance in time (Af) the moments in W< using the moment transport equations (time split):
e advance moments due to fluxes;
e advance moments due to gravity and drag;
e advance moments due to collisions.

(3) Invert the moments in #“ to find the weights and abscissas in V.
(4) Compute moments in " using ¥, (projection step).
(5) Return to step 2.

The time step At is set to a fraction of the smallest characteristic time (convection, drag, or collisions).
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5.3. A first-order, one-dimensional scheme

Because of the conservative form of Eq. (50), the finite-volume method [42] is a natural candidate for its dis-
cretization. The underlying kinetic equation (Eq. (1)) can be used for the derivation of a numerical flux formula
that ensures the robustness of the corresponding scheme. We begin by introducing the following notation for
the vector of velocity moments up to third order, their spatial flux terms, and their source terms [19,20]:

M° M! 0

M! M? D'
W = 5 H W = s S W =

M2 ( ) M3 ( ) D2 + C2

M? Mm* D'+

Using classical notation, a fractional two-step, first-order, explicit, finite-volume scheme for Eq. (50) reads

At

W= Wy = GOV W) = GOV, W),

N (53)
Wit = w(wr, At),
where G is the corresponding numerical flux function (described below) and W(Wj, At) is an approximate
solution at time ¢ = At of the differential system
dw
de
The advantage of a fractional-step algorithm is the possibility of using a quasi-analytic solution for the second

step of the scheme to handle the stiffness of the source terms. Due to their forms, we will split the contributions
to the source terms into two parts: (i) drag and gravity; (ii) collisions.

S(w) with W(0)=Ww;. (54)

5.3.1. Drag and gravity
To compute the first part, we note that the drag and gravity terms in Eq. (51) are equivalent to

dn,

de 7

dUioc _ Fiot 5 (55)
dt - mp 80i2.

These expressions can be explicitly solved to find the changes in the weights and abscissas due to drag and
gravity:

n** — n*7

e (56)

Ui, = exp(=At/7,)U;, + [1 — exp(=At/7,)|(Us — g0n7s),
where n; and U7, are the weights and abscissas found from W using quadrature, and 7, is the corresponding
drag time (see Eq. (4)) evaluated at the beginning of the step. The results in Eq. (56) are then employed to
compute the moments ;" using projection.

5.3.2. Collisions
The next step is to compute the contribution due to collisions:

dw

O C(w) with W(0) =w;". (57)
This can be done explicitly:
Wi =exp(—At/t)W;" + [1 — exp(—At/1,)|A(W?), (58)

where 1; is the local collision time and A(W) denotes the vector of equilibrium moments. To finish up, quad-
rature is used to compute n"*! and U™ from W™, and W' is computed using projection.
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5.4. Kinetic-based definition of the fluxes

Using the ideas of kinetic-based schemes [54,53], it is natural to adopt the following expression for the
numerical flux function (see Eq. (18)):

GW\, W) =0 (W) + 0 (W) (59)
with
1
U Uin
o (m) = ;nﬂ max(0, Uiy) UnUpa (60)
UiaU;yUia
and
1
L : Ut
o (W) = ;n min(0, U,,,) Ul | (61)
Ui Ujor U

where the indices (i, j, k) on the velocity abscissas in the column vector (of length 20) on the right-hand side are
chosen to represent the moments up to third order in . Note that although these expressions have been writ-
ten for fluxes in the x; direction, the extension to other directions is straightforward. As noted earlier, the use
of kinetic-based fluxes is a key difference between quadrature-based moment methods and “standard” mo-
ment methods.

5.5. Boundary conditions

In order to evaluate the fluxes in Eq. (59), we will need to specify boundary conditions. Without loss of
generality, we can consider the left-hand side of the domain and denote the boundary cell by i = 0. From
the definition of the fluxes, we can observe that it suffices to specify the weights and abscissas at i = 0. For
the examples in Section 6, we will use reflective boundary conditions:

ny n, /e,

Ui, _ —e, Uy, 7 (62)
U, U,

Usy i=0 Us, i=1

where 0 < e,, < 1 is the coefficient of restitution for the wall. If needed, the moments at i = 0 can be computed
from Eq. (62). Note that other types of boundary conditions can be readily accommodated. For example, if
the wall distribution function f;, is known, then it suffices to compute its moments ,_y and the corresponding
weights and abscissas. The latter would then be used in place of Eq. (62). In fact, because quadrature methods
use realizable weights and abscissas to represent the moments, such methods can employ any boundary con-
dition used in a Lagrangian method (e.g., in DSMC [6]).

6. Example applications

We will consider three example applications that test different aspects of the proposed closure. The first
example, the Riemann shock problem, tests the ability of the method to capture shock propagation in non-
isothermal flows at arbitrary Knudsen and Mach numbers. However, we should emphasize that this is not
our target application and hence we do not expect the quadrature-based closure to perform as well as models
specifically designed to treat shocks [4,6,13,16,17,34,41,52-54,62]. The second example, impinging particle jets,
includes the fluid drag force and demonstrates the ability of the method to capture particle trajectory crossing
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[19,20] with different collision frequencies (i.e. from no collisions to instantaneous collisions). The third exam-
ple, vertical gas-particle channel flow, tests all aspects of the model (gravity, drag, collisions, bounded domain)
needed to describe dilute gas-particle flows.

6.1. The Riemann problem

The first test problem is the Riemann shock problem described in [4] with an initial density ratio of
p4/py = 3.093, which corresponds to a Mach number of 1.25. For this problem the mean velocity is initially
zero everywhere, and the velocity variance (temperature) is normalized to unity everywhere. (Non-uniform
temperature distributions pose no additional difficulties.) The drag and gravity terms are not present in this
flow. In the limit where the collision time is null (¢ = 0), the moment transport equations reduce to the Euler
equation for an inviscid compressible fluid. As discussed in [4,16,17,52], the time evolution of the system is well
known and includes a left-moving rarefaction wave (or expansion fan), a contact surface, and a right-moving
shock wave. The velocity of the shock wave in the Euler limit can be computed from the density ratio and the
Mach number. When the collision time is finite (z > 0) the structure of the solution changes and the temper-
ature in the shock is no longer isotropic (i.e., the velocity variance in the direction of the flow is larger than the
variances in the normal directions). In the absence of collisions (7 = co) particles move without changing their
velocity. Note that because we are using a simple BGK collision model, no attempt will be made to relate 7 to
a molecular collision time scale. (See [16] for a discussion of the BGK model.) Instead, we will run the model
with different values of 7= x/M° to investigate the numerical stability of the quadrature-based moment
closure.

For simplicity, we will take the normalized flow domain to be 0 < y < 1 (y = xy) and will stop the simula-
tion before the shock wave reaches a wall (i.e. the wall boundary conditions have no effect on the results). The
numerical algorithm is run with a CFL number of 0.5 and 400 uniformly spaced grid cells. (The CFL number
is defined in terms of the largest magnitude of all velocity abscissas [20].) Grid refinement studies showed no
further improvements on a finer grid. Cases with k = 0 are run with a time step determined by the CFL con-
dition and the collisions reset the moments to the equilibrium values at the end of the time step (but before
inverting the moments to find weights and abscissas). Cases with finite x use a time step found from the min-
imum of the CFL time and x/10. Note that because the moment equations are solved directly in conservative
form and the quadrature inversion procedure exactly conserved the moments, the lower-order moments are
conserved for all values of k. (See discussion in [4,17,52,62] on difficulties with conserving moments with other
methods.) Finally, we should note that the model can be solved on a personal computer with run times on the
order of seconds.

The structure of the flow can be seen from the temperature contour plots in Fig. 2. For x = 0 the classical
shock structure is found and agrees well with the known solution to the Euler equation [4]. For k = 0.1 the
shock and contact surface broaden and the shock speed is reduced. Finally, for k = oo the flow structure is
very different with symmetric high temperature waves traveling to the left and right, separated by a low-tem-
perature zone.

An example of the 20 moments is shown in Fig. 3 for the case x = 0 at time # = 0.23 (i.c., at the end of the
simulation). It can be noted that due to the symmetry of the Riemann problem, 12 of the moments are null.
(The eight non-zero moments are M°, M,, M3,, M3,, M3,, M3,,, M3,,, and M3,,.) Note that because the off-
diagonal second-order moments are null, the Cholesky decomposition (L) is diagonal. This implies that the
third-order moments controlled by the quadrature method are M3,,, M3,,, M3;;, and M3,,, while the other
third-order moments are found by projection. Hence, the results in Fig. 3 show that the projection operation
does not introduce errors in moments that should be null by symmetry. Finally, we can note that if one is only
interested in solving the Riemann problem the computational efficiency can be increased by solving only for
the non-zero moments needed for quadrature inversion."!

1 A better alternative for the Riemann problem would be to rewrite the density function into two separate univariate density functions as
proposed by Chu [16] and done, for example, in [52]. One-dimensional quadrature could then be used for each density function (i.e. two
sets of weights and abscissas). Because 1D quadrature can use the PD algorithm [49] it would be straightforward to go to higher-order
moments.
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Fig. 2. Temperature contour plots (with equally-spaced contours) for the Riemann problem with Ma = 1.25. Top: x = 0. Middle: x = 0.1.
Bottom: k = 10. Low to high 7 is shown as blue to red contours. See Fig. 5 for a typical temperature range.

In Fig. 4 we present results for selected flow quantities with x = 0.01 at ¢ = 0.23. In the first row, the
weights and velocity abscissas computed from the moments using quadrature are presented. Note that due
to the relatively small value of « all eight weights are nearly equal. (For x = 0 all weights are equal.) Likewise,
the U and W abscissas exhibit a high degree of symmetry, while the V abscissas are asymmetric due to the
mean velocity in the y direction. Note that due to the diagonal form for L the velocity abscissa vectors lie
at the eights corners of a cube in velocity phase space centered at the mean velocity. Hence each curve in
the plots of the abscissas actually corresponds to four abscissas. In the second row of Fig. 4 the density
p = M" and the mean velocities are plotted. As expected, the U and W components are null (due to symmetry)
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Fig. 3. Twenty transported moments in the Riemann problem with Ma = 1.25 and k = 0 at r = 0.23. Note that due to symmetry 12 of the
moments are null.

Fig. 4. The Riemann problem with Ma = 1.25 and x = 0.01 at # = 0.23. The density p is shown in the second row, first column.
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Fig. 5. The Riemann problem with Ma = 1.25 and x = 0.1 at ¢+ = 0.23. The density p is shown in the second row, first column.

and the V' component is positive between the expansion wave and the shock front. In the third row of Fig. 4
the anisotropy components of the velocity, defined by

a,-j = (G’//T — 51]) l,] =u,v,w,

where T= (T, +T,+T,)/3 and T; =g, are plotted. The temperatures in each direction and pressure
(p = pT) are also shown. Note that because « is finite, the diagonal anisotropy components are non-zero in
the shock wave and in the expansion fan. This non-equilibrium behavior is also observed in the temperature
plots. The reader can compare the results in Fig. 4 to those presented in Fig. 10 of [4], and it can be clearly
observed that the quadrature-based moment closure captures the essential features of finite Knudsen number
flow.'?

Results for progressively larger values of k are shown in Figs