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Abstract

Dilute gas-particle flows can be described by a kinetic equation containing terms for spatial transport, gravity, fluid
drag, and particle–particle collisions. However, the direct numerical solution of the kinetic equation is intractable for most
applications due to the large number of independent variables. A useful alternative is to reformulate the problem in terms
of the moments of the velocity distribution function. Closure of the moment equations is challenging for flows away from
the equilibrium (Maxwellian) limit. In this work, a quadrature-based third-order moment closure is derived that can be
applied to gas-particle flows at any Knudsen number. A key component of quadrature-based closures is the moment-inver-
sion algorithm used to find the weights and abscissas. A robust inversion procedure is proposed for moments up to third
order, and tested for three example applications (Riemann shock problem, impinging jets, and vertical channel flow).
Extension of the moment-inversion algorithm to fifth (or higher) order is possible, but left to future work. The spatial
fluxes in the moment equations are treated using a kinetic description and hence a gradient-diffusion model is not used
to close the fluxes. Because the quadrature-based moment method employs the moment transport equations directly
instead of a discretized form of the Boltzmann equation, the mass, momentum and energy are conserved for arbitrary
Knudsen number (including the Euler limit). While developed here for dilute gas-particle flows, quadrature-based moment
methods can, in principle, be applied to any application that can be modeled by a kinetic equation (e.g., thermal and non-
isothermal flows currently treated using lattice Boltzmann methods), and examples are given from the literature.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of gas-particle flows is complicated by the wide range of phenomena that can
occur in real applications [3,11,20,23–25,37,57,60,61,63,69]. In the absence of the gas phase, the particles
behave as a granular flow. In the dilute limit, a granular flow is dominated by binary collisions and can be
described by a kinetic equation [14] (i.e., it is a granular gas). On the other hand, in the dense limit sustained
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particle–particle contacts are dominant and the (local) kinetic description breaks down. As in rarefied gas
dynamics [13], the dilute limit can be parameterized by a dimensionless number (Knudsen number, Kn) that
represents the importance of particle–particle collisions relative to free transport. In the limit of small Knud-
sen number, collisions are dominant and the particle velocity distribution function is very near the equilibrium
(Maxwellian) distribution. In the equilibrium limit, it is thus possible to describe a dilute granular flow by
velocity moments up to second order (the so-called hydrodynamic limit [38]). For larger Knudsen number,
the equilibrium distribution is no longer a good approximate and, eventually, one must solve the Boltzmann
kinetic equation to adequately capture the flow physics of a non-equilibrium granular gas (as is done for rar-
efied gases [4,13,52]). For wall-bounded granular gases, non-equilibrium effects can be important near the
walls even at small Knudsen numbers because the velocity distribution function is composed of incoming
and outgoing particles with velocities far from equilibrium (e.g. a bimodal distribution can be observed near
the walls).

Adding the fluid phase introduces new physics, the most important of which is the fluid-particle drag term.
For an isolated particle in a uniform fluid, the particle Reynolds number (Rep) determines the net force of the
fluid on the particle. For gas-particle flows with moderately large particles, we usually have (Rep � 1) and the
drag force is parameterized by a drag coefficient [58]. Another important parameter in fluid-particle flows is
the Stokes number (St), which is the ratio of the characteristic response time of the particle to the character-
istic time scale of the fluid flow. For example, in a particle-laden impinging-jet flow the value of the Stokes
number will determine whether or not the particles cross the impingement plane. If the Stokes number is suf-
ficiently small (St � 1), the particles will not cross the plane and will have nearly the same velocity as the fluid.
On the other hand, for very large Stokes numbers, the particles barely ‘‘feel” the fluid and thus will continue
directly through the impingement plane. Note that if the flow is dilute, particles can readily cross the plane
without risk of collision with other particles, i.e., particle trajectory crossing (PTC) will occur. Locally (i.e.,
at the impingement plane) the velocity distribution function will be bimodal (even when particles do not col-
lide) with values corresponding to the velocities originating from each side of the plane. More generally, par-
ticles with finite Stokes number will tend to accumulate in regions of the fluid flow with small vorticity [60]. In
turbulent flows, such regions correspond to local (time-dependent) impingement zones [19]. Because of the
complex particle physics in such regions, which lead to particle velocity distributions far from Maxwellian,
equilibrium closures for the moment equations will fail. For example, an equilibrium closure for the velocity
moments will predict delta-shocks [6] in the local number density when, in fact, no such behavior is present in
the flow [20]. In order to avoid such unphysical behavior, it is necessary to extend the moment closure to han-
dle PTC, which is ubiquitous in turbulent gas-particle flows.

The range of Knudsen, Reynolds, and Stokes numbers observed in real gas-particle flows is very wide, and
hence it is difficult to find a computational model that will work for all applications. Moreover, even in a given
flow, the ranges of these numbers may be large due, for example, to local dense and dilute regions or to a wide
range of gas-phase velocities. In general, a model for dilute gas-particle flow must include both the kinetic
description for the particle phase and a coupled momentum balance equation for the gas phase (i.e., two-
way coupling). Nevertheless, the principal modeling challenge is the treatment of the kinetic equation and,
therefore, we will consider only one-way coupling (i.e., the fluid velocity is given) in this work. Furthermore,
we will consider examples where the Stokes number is large enough that velocity fluctuations (i.e., due to gas-
phase turbulence) can be neglected [57]. These assumptions will allow us to isolate the critical role of non-equi-
librium effects in moment closures, and to investigate their treatment using quadrature-based moment clo-
sures. We should note, however, that because the coupling with the fluid phase occurs at the level of the
moments, the conclusions drawn in this work have direct implications on the closures used in fully two-
way coupled moment methods (e.g., found using the kinetic theory of granular flow [3]).

The quadrature method of moments (QMOM) was introduce by McGraw [49] as a closure for population
balance equations (PBE) involving a number density function (NDF) f ðn; tÞ with independent variable n rep-
resenting the particle volume or mass. For example, in an aerosol n might correspond to the droplet volume,
which evolves in time due to physical processes such as condensation, evaporation, aggregation, and breakup.
The PBE that governs the NDF is then an integro-differential equation that is difficult to solve numerically.
In practice, the principal quantities of interest for comparison with data are the moments of the NDF
defined by
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mkðtÞ ¼
Z 1

0

nkf ðn; tÞdn:
Thus, a closure of the PBE that can accurately predict the lower-order moments is often sufficient. In most
cases, however, the moment equations derived from the PBE are not closed (see [43] for a discussion of mo-
ment closures) and a closure step is required. Using QMOM, the moments are expressed in terms of a finite set
of N weights naðtÞ and N abscissas naðtÞ, defined such that [49]
mk ¼
XN

a¼1

nan
k
a for k ¼ 0; 1; . . . ; 2N � 1:
For higher-order moments (i.e. k P 2N ) and non-integer moments, the quadrature weights and abscissas pro-
vide a consistent closure. For example, let gðnÞ be a smooth function of n. The QMOM approximation of the
moment involving g is then
Z 1

0

gðnÞf ðnÞdn �
XN

a¼1

nagðnaÞ:
In a similar manner, all of the terms in the moment equations for mk with k ¼ 0; 1; . . . ; 2N � 1 can be closed,
resulting in a closed system of 2N equations.

A key component of QMOM is the inversion algorithm used to find the weights and abscissas from the
moments. A direct nonlinear solve is poorly conditioned (and gets worse for increasing N); however, the prod-
uct-difference (PD) algorithm introduced by McGraw [49] overcomes this difficulty by replacing the nonlinear
solve with a computationally efficient eigenvalue–eigenvector problem that is well conditioned even for large
N. Using the PD algorithm, it is possible to solve for a spatially dependent NDF using standard flow codes to
transport the moments [26,47,48,65,71]. Moreover, even with highly coupled and nonlinear aggregation ker-
nels, good accuracy for the lower-order moments can usually be attained with N ¼ 4 nodes [48].

Unfortunately, the PD algorithm only works for uni-variate distribution functions, but not for bi-variate
(or higher) NDF where f ðn; gÞ depends on two (or more) internal coordinates. In order to overcome this lim-
itation, one can work directly with transport equations the weights and abscissas (direct QMOM [46] or
DQMOM), which works well when n and g represent passive scalars (e.g. droplet volume and surface area
[27]). The DQMOM approach has also been applied to polydisperse gas–solid flows [23] to describe the fluid
dynamics in the presence of multiple particle sizes. However, in that application the particle velocity is
assumed to be in the equilibrium (Maxwellian) limit so that only the mean particle velocity (albeit conditioned
on particle size) suffices to describe the flow dynamics. For non-equilibrium gas–solid flows (such as those con-
sidered in this work), the velocity distribution function can deviate strongly from the Maxwellian form, and
higher-order velocity moments are required to close the transport equations. In principle, DQMOM can be
used with the velocity moments to rewrite the moment transport equations in terms of transport equations
for the weights and abscissas [29]. In the absence of collisions, the resulting transport equations for the velocity
abscissas [29] have the form of the pressure-less gas dynamics equation [6], and each abscissa evolves indepen-
dently of the others. Although the DQMOM formulation for velocity works well in most of the flow domain,
it fails at ‘‘singular” points where the velocity abscissas change discontinuously [19] (e.g., the PTC points).
Remarkably, a quadrature-based moment closure for the velocity distribution function is robust at such points
[19,20]. However, for multi-dimensional velocity distributions (e.g. three-dimensional phase space), the key
challenge of inverting the moments to find the weights and velocity abscissa remains.

The kinetic equation for the velocity distribution function is used in many applications besides gas-particle
flows [4,9,12,13,16,17,33–35,39,44,45,52,55,56,67], and thus there have been many computational methods
developed to find approximate solutions. In the context of quadrature methods, the most closely related tech-
niques are those based on ‘‘multiphase” or ‘‘multi-branch” solutions to the kinetic equation (i.e. without the
collision term in the Boltzmann equation) [9,22,32,33,39,40,44,45,55,67]. (See [56] for a recent review.) In fact,
the quadrature formula used in moment-based methods [56] for these applications to relate the weights and
abscissas to the moments is the same as in QMOM; however, in the literature on multiphase solutions a direct
nonlinear solver is used (and is therefore limited to small N) instead of the PD algorithm. A more significant
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difference between QMOM and multiphase solutions is that the latter are designed to yield exact solutions to
the kinetic equation without collisions, while the former provides approximate solutions to the kinetic equation
with collisions.1 Despite these differences, the difficulty of representing multiple velocities generated by the spa-
tial transport term is shared by many applications of the kinetic equation.

At present, there are two classes of methods that can be used to find accurate solutions to the kinetic equa-
tion: (i) direct solvers that discretize velocity phase space [4,10,12,31,51,52]; (ii) Lagrangian (or ray-tracing)
methods [2,6,21,56,61,69]. However, the computational cost of using either of these methods in many appli-
cations (such as fluid-particle flows) is prohibitive. Moreover, in most applications we are not interested in
knowing the exact form of the velocity distribution function, rather knowledge of its lower-order moments
is sufficient. For these reasons, there is considerable motivation to develop predictive moment closures whose
accuracy can be improved in a rational manner. Quadrature-based moment closures fall into this category
because, in principle, the accuracy of these closures can be improved by increasing the number of quadrature
nodes.2 Nevertheless, as mentioned previously, a key technical challenge with quadrature-based moment clo-
sures is the development of efficient moment-inversion algorithms for multidimensional velocity distribution
functions. We should note that because the weights are non-negative and the abscissas are located in velocity
phase space, a quadrature-based moment method provides an adaptive3 discretization of velocity phase space
that is consistent with the underlying moments. Compared to direct solvers, this discretization is very sparse
(equal to the number of nodes). An important open question is thus to determine the range of accuracy that
can be achieved using quadrature in comparison to direct solvers. In this work, we address the problem of
finding a moment-inversion method for velocity moments up to third order, and leave the question of
increased accuracy using more nodes to future work.

The remainder of the paper is organized as follows. In Section 2 we introduce the kinetic equation for dilute
gas-particle flows. In Section 3 we present the moment transport equations up to third order derived from the
kinetic equation. Section 4 describes in detail the moment-inversion method for the velocity moments for one-,
two-, and three-dimensional velocity phase space (using 2, 4, and 8 nodes, respectively) and compares the
quadrature formulas to other methods available in the literature. In Section 5 we present the kinetic-based
numerical algorithm used to solve the moment equations. Section 6 is devoted to example applications to test
the numerical implementation. Finally, in Section 7 conclusions are drawn and the key characteristics of the
proposed moment method and numerical algorithm are discussed.
2. Kinetic description of dilute gas-particles flows

Consider the following kinetic equation for the velocity distribution function f ðv; x; tÞ of dilute monodis-
perse solid particles in a gaseous flow [57]:
1 Mo
functio
order d
velocit

2 Wh
mome

3 Th
otf þ v � oxf þ ov � ðf gÞ þ ov � f
F

mp

� �
¼ C; ð1Þ
where v is the particle velocity vector, g is the gravity force, F is the drag force from the gas phase acting on a
particle, mp is the particle mass, and C is the particle–particle collision term. In this work, we will assume that
the collision term is closed. For example, using the Bhatnagar–Gross–Krook (BGK) approximation [5], the
collision term becomes
C ¼ 1

s
ðfeq � f Þ; ð2Þ
re generally, multiphase solutions do not consider interactions between different branches or cases where the velocity distribution
n is continuous in velocity (e.g. Maxwellian). Mathematically, the form of the kinetic equation in these applications is at most first-
erivatives in the independent variables [56]. Collisions and other non-local interaction terms (which are not first order) couple the

y abscissas in a non-trivial manner [29,46].
ile this has been clearly demonstrated for ‘‘passive” moments (e.g. volume) [27,48,49], it remains to be shown for the velocity

nts.
e discretization is adaptive because it changes with the moments.
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where s is a collision time constant and feq is the equilibrium (Maxwellian) distribution. In d dimensions, feq is
given by
4 Ine
req wit
value.
feqðvÞ ¼
M0

ð2preqÞd=2
exp � jv�Upj2

2req

 !
; ð3Þ
where M0 ¼
R

f dv is the particle number density (zero-order moment), Up and req are the mean particle
velocity and equilibrium variance, respectively. For real particles, collisions are usually inelastic (i.e. req is
not conserved). However, in this work, we will treat req as a conserved quantity.4 Note that the Knudsen
number is proportional to the collision time s, so that the velocity distribution function is equal to feq when
Kn ¼ 0. In the opposite limit, the particles are collision-less and the velocity distribution function will be
determined by the remaining terms in Eq. (1) (and hence can be very far from equilibrium).

For dilute gas-particle flows, the drag force can be approximated by
FðUf ; vÞ ¼
3mpqf

4dpqp

CdjUf � vjðUf � vÞ; ð4Þ
where Ufðx; tÞ is the fluid velocity (assumed to be known in this work), dp is the particle diameter, qf the fluid
density, qp the particle density, and Cd the particle drag coefficient given by the following correlation due to
[58]:
Cd ¼
24

Rep

ð1þ 0:15Re0:687
p Þ ð5Þ
with Rep ¼ jUf � vjdp=mf being the particle Reynolds number where mf is the fluid kinematic viscosity. In some
cases, we will also use the simpler Stokes drag coefficient: Cd ¼ 24=Rep. The drag term can then be expressed as
FðUf ; vÞ ¼
mp

sp

ðUf � vÞ; ð6Þ
where sp ¼ qpd2
p=ð18lfÞ. The particle Stokes number can then be defined as St ¼ sp=sf where sf is the charac-

teristic time for the fluid velocity Uf . For very small St the particles will follow the fluid (v � Uf ) and hence
they will not collide in dilute flows. Moreover, in this limit, flow-induced particle segregation is not observed in
turbulent flows. On the other hand, for very large St the particles respond very slowly to changes in the fluid
velocity and act as a granular gas. In between, for St � 1 flow-induced segregation in turbulent flow is signif-
icant and has a strong effect on collision statistics [24,60]. In any case, the Stokes number has a strong effect on
the velocity distribution function, which can be described by Eq. (1), and makes the behavior of gas-particle
flows significantly different than molecular gases (i.e. St ¼ 1). Note that drag can be a source or a sink for req,
depending on how the particles respond to fluid velocity fluctuations. However, at large St the drag will lead to
dissipation of req because fluid velocity fluctuations will have no effect on the particle velocity fluctuations [57].

In practice, due to the complexity of the kinetic description, the velocity distribution function must be
found using a Lagrangian particle tracking code (or DSMC) coupled to a turbulent flow solver for Uf .
Although accurate, this solution method is rather expensive and subject to statistical errors due to finite sam-
ple sizes. Our interest here is to approximate solutions to Eq. (1) for dilute gas-particle flows
[11,24,25,60,63,69], such as the vertical channel flows described in [37,57,61], using Eulerian moment methods.
However, the numerical method developed in this work can, in principle, be used for other physical situations
that can be described by Eq. (1) (e.g., dilute sprays [66]). For example, neglecting the terms involving the grav-
ity and drag force, Eq. (1) is the simplest version of the Boltzmann equation, for which there exists an exten-
sive literature on numerical methods for its solution in various limiting cases [6,13], including small-scale
gaseous hydrodynamics [35] and the semiconductor Boltzmann–Poisson system [12]. We will thus use the Rie-
mann shock problem from gas dynamics [4,16,52,62] as one of the test cases in Section 6. Another important
lastic collisions can be introduced using a restitution coefficient 0 6 e 6 1 [38]. Then, in the moment equations, one simply replaces
h e2req. For example, the decay rate for req is then equal to ðe2 � 1Þreq. Isothermal flows can be treated by setting req to a constant
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test case for dilute gas-particle flows is impinging particle jets [19,20] with or without collisions, which is a
model for particle trajectory crossing (PTC) at finite Stokes numbers. For this example, the velocity distribu-
tion function is locally bimodal and hence far removed from feq. Moment methods developed for flows near
equilibrium (i.e. collision dominated or small Kn) cannot be used to describe PTC because they cannot handle
locally multi-valued velocities. However, quadrature-based moment closures perform well for this case in the
collision-less limit [19,20]. As noted in the Introduction, the kinetic equation (i.e. without collisions) also
appears in other applications such as geometric optics [56].

3. Moment transport equations

In this work we develop a third-order moment closure using quadrature. In three dimensions, the 20
moments up to third order will be denoted by
W 3 ¼ ðM0;M1
1;M

1
2;M

1
3;M

2
11;M

2
12;M

2
13;M

2
22;M

2
23;M

2
33;M

3
111;M

3
112;M

3
113;M

3
122;M

3
123;M

3
133;

M3
222;M

3
223;M

3
233;M

3
333Þ:
The moments are found from the velocity distribution function by integration:
M0 ¼
Z

f dv; M1
i ¼

Z
vif dv;

M2
ij ¼

Z
vivjf dv; M3

ijk ¼
Z

vivjvkf dv:

ð7Þ
Thus the transport equations for the moments can be easily found starting from Eq. (1) (repeated indices
imply summation):
oM0

ot
þ oM1

i

oxi
¼ 0;

oM1
i

ot
þ

oM2
ij

oxj
¼ giM

0 þ D1
i ;

oM2
ij

ot
þ

oM3
ijk

oxk
¼ giM

1
j þ gjM

1
i þ

M0

s
ðreqdij � rijÞ þ D2

ij;

oM3
ijk

ot
þ

oM4
ijkl

oxl
¼ giM

2
jk þ gjM

2
ik þ gkM2

ij þ
1

s
ðDijk �M3

ijkÞ þ D3
ijk;

ð8Þ
where the final terms on the right-hand sides are due to drag.
The moments of the equilibrium distribution are defined by
Dijk ¼ M0ðdijU pk þ dikUpj þ djkU piÞreq þM0U piUpjU pk; ð9Þ

where the mean particle velocity is U pi ¼ M1

i =M0. Note that the collision term only affects directly the second-
and third-order moments, moving them towards the equilibrium values. Nevertheless, the collisions affect all
moments indirectly through the transport terms. The unclosed terms in the moment transport equations (M4

ijkl,
D1

i , D2
ij and D3

ijk) are closed using quadrature as described in Section 4.
Of particular importance is the treatment of the spatial fluxes, which are represented by a kinetic descrip-

tion [8,18,53,54]. For example, the flux term for the zero-order moment is separated into two contributions:
M1
i ¼ Q�i þ Qþi ¼

Z 0

�1
vi

Z
f ðvÞdvj dvk

� �
dvi þ

Z 1

0

vi

Z
f ðvÞdvj dvk

� �
dvi: ð10Þ
The fluxes for the higher-order moments are constructed in an analogous manner. The quadrature-based
closure of the right-hand side of Eq. (10) is discussed in Section 4.2.
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4. Quadrature-based third-order moment closure

As noted in the Introduction, quadrature-based moment methods distinguish themselves from other
moment methods by the use of quadrature weights and abscissas to model unclosed terms in the moment
transport equations. Thus, when developing a quadrature method, an important task is to define the algorithm
for computing the weights and abscissas from the moments. In one-dimensional systems, this is easily accom-
plished using the PD algorithm [49]. The extension to higher dimensions is less straightforward and is the main
objective of this section. Here we limit ourselves to quadrature formulas for moments up to third order, and
use one-dimensional product formulas [59]. Thus, the number of quadrature nodes in each direction of veloc-
ity phase space will be two.

4.1. Relationship between moments and quadrature nodes

Let d 2 ð1; 2; 3Þ denote the number of phase-space dimensions, and define b ¼ 2d . Let V b ¼ ½ðna;UaÞ� with
a 2 ð1; . . . ; bÞ denote the set of weights and abscissas for the b-node quadrature approximation of f. Note that
the set of quadrature nodes V b contains ð1þ dÞb unknowns (i.e. b weights, and b d-component velocity vec-
tors). To find the components of V b, we work with the velocity moments up to third order (for
i 6 j 6 k 2 1; . . . ; d), which are related to the quadrature weights and abscissas by
M0 ¼
Xb

a¼1

na; M1
i ¼

Xb

a¼1

naU ai;

M2
ij ¼

Xb

a¼1

naU aiU aj; M3
ijk ¼

Xb

a¼1

naU aiU ajU ak:

ð11Þ
In the following, we will let W d denote the set of third-order moments in d dimensions. The principal objective
of this section is to describe an algorithm for finding V b from W d . The inverse operation (finding W d from V b)
is Eq. (11), which we will refer to as projection for reasons that will become apparent later. In general, it will
not be possible to represent all possible moment sets in W d using weights and abscissas in V b. We will therefore
define the set of representable moments as W dy � W d .

4.2. Quadrature-based closure of the moment transport equations

The moment transport equations derived in Section 3 contain unclosed terms. Using quadrature, these
terms can be expressed in terms of the weights and abscissas:
D1
i ¼

Xb

a¼1

na

mp

F ia; ð12Þ

D2
ij ¼

Xb

a¼1

na

mp

ðU iaF ja þ F iaUjaÞ; ð13Þ

D3
ijk ¼

Xb

a¼1

na

mp

ðU iaU jaF ka þ F iaU jaUka þ U iaF jaUkaÞ; ð14Þ

M4
ijkl ¼

Xb

a¼1

naUiaUjaU kaUla; ð15Þ
where
Fa ¼ FðUf ;UaÞ ¼
mp

sa
ðUf �UaÞ ð16Þ
and sa is the characteristic drag time for node a.
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Quadrature is also used to write the spatial fluxes in terms of the weights and abscissas [19,20]. The fluxes
are based on the kinetic description given in Eq. (10) using a delta-function representation of the distribution
function:
5 Int
f ðvÞ ¼
Xb

a¼1

nadðv�UaÞ: ð17Þ
For example, the negative and positive contributions to the flux terms for the zero-order moment are
expressed as
Q�i ¼
Xb

a¼1

na minð0;U iaÞ and Qþi ¼
Xb

a¼1

na maxð0;U iaÞ: ð18Þ
Likewise, the fluxes for higher-order moments have analogous forms [19,20]. This flux definition has impor-
tant ramifications on the numerical algorithm used to solve the moment transport equations. For one thing, it
is obvious that the fluxes are tightly coupled to the quadrature algorithm because the latter determines the
abscissas. In particular, the fluxes will vary smoothly in space only if the abscissas are smoothly varying. It
can also be noted that because the fluxes are written in terms of a finite set of velocities, the closed model equa-
tions do not contain gradient-diffusion terms as is usually the case in other moment methods. Moreover, be-
cause of the form of the fluxes, there is no advantage gained by rewriting the transport equations in terms of
the central velocity moments (i.e. moments of the fluctuating velocity).

Finally, we should note that fluxes as defined above are not guaranteed to produce moments that can be rep-
resented by the proposed quadrature algorithm (i.e. the moments lie in W d but not necessarily in W dy, and only
the latter can be represented by the weights and abscissas). For this reason, after advancing the moments due to
the fluxes (or any other process that does not remain in W d), it is necessary to project the moments back into
W dy. This is accomplished simply by using the moments to compute the weights and abscissas, and then using
Eq. (11) to recompute the moments. We will refer to this operation as a projection step.

Our principal objective is to show that if
ðiÞ M0 > 0 and ðiiÞ for all i 2 ð1; . . . ; dÞ M2
ii > ðM1

i Þ
2
=M0;
then V b can be found from W d in a well-defined manner. For clarity, we will first describe the one-dimensional
case with d ¼ 1 and two nodes: b ¼ 2. The higher-dimensional cases (b = 4 and 8) are constructed in a similar
manner, and are discussed later.

4.3. Two-node quadrature: V 2 from W 1

For the one-dimensional case, we begin by defining the mean particle velocity:
U p ¼ M1
1=M0; ð19Þ
and the velocity variance:
rU ¼ r2 ¼ M2
11=M0 � U 2

p1; ð20Þ
so that req ¼ r2. With a two-node quadrature approximation, we introduce a new variable X defined by a lin-
ear transformation of v1

5:
X ¼ ðv1 � U pÞ=r so that v1 ¼ rX þ U p: ð21Þ

Note that X is a scalar representing the normalized distance (in velocity phase space) from the mean velocity in
the direction of the velocity fluctuations.

Denoting the four normalized moments with respect to X up to third order by
W 1	 ¼ ðm0;m1;m2;m3Þ;
roducing X when d ¼ 1 is superfluous. However, for consistency with higher dimensions, we do so anyway.
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it is straightforward to show that these moments are related to the velocity moments by
m0 ¼ 1; m1 ¼ 0; m2 ¼ 1; m3 ¼ hðU p; r;M3
1=M0Þ; ð22Þ
where h denotes a function of its arguments. This function is rather long (see Appendix A), but can easily be
written out starting from the definition of X in terms of v1 given in Eq. (21). Likewise, the weights and abscis-
sas in X phase space, denoted by V 	2 ¼ ½ðn	a;X aÞ; a 2 ð1; 2Þ�, are related to V 2 by
na ¼ M0n	a and U a ¼ rX a þ Up: ð23Þ

Thus, we can compute V 	2 in terms of W 1	, and then use Eq. (23) to find V 2.

The moment set W 1	 is related to V 	2 by
m0 ¼
X2

a¼1

n	a; m1 ¼
X2

a¼1

n	aX a; m2 ¼
X2

a¼1

n	aX 2
a; m3 ¼

X2

a¼1

n	aX 3
a: ð24Þ
Note that W 1	 contains four moments. Thus, if W 1	 is known, we can invert Eq. (24) to find the four unknowns
in V 	2, from which we can compute V 2 using Eq. (23). Using two-node quadrature [49], the moments of X can
be easily inverted to find V 	2:
n	1 ¼ 0:5þ c; X 1 ¼ �
1� 2c
1þ 2c

� �1=2

;

n	2 ¼ 0:5� c; X 2 ¼
1þ 2c
1� 2c

� �1=2

;

ð25Þ
where ð�1=2 < c < 1=2Þ
c ¼ m3=2

½ðm3Þ2 þ 4�1=2
: ð26Þ
It is then possible to compute W 1, defined by
W 1 ¼ ðM0;M1
1;M

2
11;M

3
111Þ;
using V 2 in Eq. (11). These operations can be expressed as
W 1 $ W 1	 $ V 	2 $ V 2 $ W 1:
Note that in the case of d ¼ 1 all four moments in W 1 can be exactly reproduced by V 	2. This will not be the
case for higher dimensions.

4.4. Four-node quadrature: V 4 from W 2

In two dimensions, the set of 10 moments up to third order is defined by
W 2 ¼ ðM0;M1
1;M

1
2;M

2
11;M

2
12;M

2
22;M

3
111;M

3
112;M

3
122;M

3
222Þ;
and we seek to define a four-node quadrature based on these moments. Again we begin by defining the mean
particle velocity vector:
Up ¼
M1

1=M0

M1
2=M0

" #
; ð27Þ
and the velocity covariance matrix:
rU ¼ ½rij� ¼
M2

11=M0 � U 2
p1 M2

12=M0 � U p1U p2

M2
12=M0 � U p1Up2 M2

22=M0 � U 2
p2

" #
; ð28Þ
so that req ¼ ðr11 þ r22Þ=2.
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The next step is to introduce a linear transformation A to diagonalize rU .6 The choice of the linear trans-
formation is not unique,7 but for reasons that will be described later, we choose to use the Cholesky decom-
position defined such that LTL ¼ rU and L is upper triangular:
6 Str
realiza

7 Th
LTCTC

rotatio
L ¼
r1=2

11 r12=r
1=2
11

0 ðr22 � r2
12=r11Þ1=2

" #
: ð29Þ
With this choice we set A ¼ LT and introduce a two-component vector X ¼ ½X 1X 2�T defined by
X ¼ A�1ðv�UpÞ so that v ¼ AXþUp: ð30Þ

If we denote the first four moments of X i by mk

i ; k 2 ð0; 1; 2; 3Þ; then they are related to the velocity moments
by
m0
i ¼ 1; m1

i ¼ 0; m2
i ¼ 1; m3

i ¼ hiðA;Up;M3
111=M0; . . . ;M3

222=M0Þ; ð31Þ

where hi depends, in general, on all 10 third-order velocity moments (see Appendix A).

Using the two-node quadrature formulas (Eq. (25)), the moments of X i can be inverted for i 2 ð1; 2Þ to find
ðnð1Þ; nð2Þ;X ð1Þ;X ð2ÞÞi:
nðiÞ1 ¼ 0:5þ ci; X ðiÞ1 ¼ �
1� 2ci

1þ 2ci

� �1=2

;

nðiÞ2 ¼ 0:5� ci; X ðiÞ2 ¼
1þ 2ci

1� 2ci

� �1=2

;

ð32Þ
where ð�1=2 < ci < 1=2Þ
ci ¼
m3

i =2

½ðm3
i Þ

2 þ 4�1=2
: ð33Þ
The locations of the nodes before and after the linear transformation are illustrated in Fig. 1 for a Maxwellian
distribution with zero mean velocity.

The four-node quadrature approximation is then defined using the tensor product of the one-dimensional
abscissas as
V 	4 ¼ ½ðn	1;X ð1Þ1;X ð2Þ1Þ; ðn	2;X ð1Þ1;X ð2Þ2Þ; ðn	3;X ð1Þ2;X ð2Þ1Þ; ðn	4;X ð1Þ2;X ð2Þ2Þ�; ð34Þ
where the (as yet) unknown weights n	a must obey the linear equations
n	1 þ n	2 ¼ nð1Þ1
n	3 þ n	4 ¼ nð1Þ2
n	1 þ n	3 ¼ nð2Þ1
n	2 þ n	4 ¼ nð2Þ2

)
n	1 � n	4 ¼ nð1Þ1 � nð2Þ2
n	2 þ n	4 ¼ nð2Þ2
n	3 þ n	4 ¼ nð1Þ2

: ð35Þ
The equations on the left-hand side are the weight constraints for each node, and the equations on the right-
hand side are a linearly independent set. The right-hand sides of Eq. (35) are known, and have the property
that nð1Þ1 þ nð1Þ2 ¼ 1 and nð2Þ1 þ nð2Þ2 ¼ 1.

The linear system in Eq. (35) has rank three. We must therefore add another linear equation to define the
four weights. For this purpose, we will use the cross moment m2

12 ¼ hX 1X 2i ¼ 0, the value of which follows
from the definition of A. In terms of the weights and abscissas in Eq. (34), we have
ictly speaking, it is not necessary to diagonalize the covariance matrix. However, if this is not done, it can be shown that certain
ble moment sets lead to negative weights.
e transformation is not unique because we can always introduce an orthogonal matrix C with the property CT ¼ C�1 such that
L ¼ rU . The linear transformation can then be defined as A ¼ ðCLÞT. There are an infinite number of choices for C, e.g., the
n matrices.
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Fig. 1. Four-node quadrature representation of the two-dimensional equilibrium distribution function feqðu; vÞ (equally-spaced contours)
in velocity phase space (top) and in transformed phase space (bottom). The abscissas are denoted by the four filled circles. For this example
the weights are all equal to M0=4.
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X ð1Þ1X ð2Þ1n	1 þ X ð1Þ1X ð2Þ2n	2 þ X ð1Þ2X ð2Þ1n	3 þ X ð1Þ2X ð2Þ2n	4 ¼ 0: ð36Þ
Recall that the abscissas (X ðiÞa) are known; hence, this expression is linear in the weights ðn	aÞ, and we can use it
with Eq. (35) to form a full-rank linear system. The resulting system can be inverted analytically to find
n	1 ¼ nð1Þ1nð2Þ1 ¼ ð0:5þ c1Þð0:5þ c2Þ

n	2 ¼ nð1Þ1nð2Þ2 ¼ ð0:5þ c1Þð0:5� c2Þ

n	3 ¼ nð1Þ2nð2Þ1 ¼ ð0:5� c1Þð0:5þ c2Þ

n	4 ¼ nð1Þ2nð2Þ2 ¼ ð0:5� c1Þð0:5� c2Þ:

ð37Þ
Note that these weights are always non-negative.
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In summary, the weights and abscissas in V 4 are found from those in V 	4 using Eq. (30) to invert the abscis-
sas and na ¼ M0n	a. The eight moments controlled in this process are
W 2	 ¼ ðm0;m1
1;m

1
2;m

2
1;m

2
12;m

2
2;m

3
1;m

3
2Þ:
Note that the two third-order moments in W 2	 are a linear combination of the four third-order moments in
W 2. Hence, W 2	 is a subset of W 2 containing eight independent moments (instead of 10). However, given mo-
ments in W 2 it is straightforward to project them (using the weights and abscissas) into W 2y, i.e., the eight-
dimensional moment subspace that can be represented by V 4 is W 2y. The overall procedure can be represented
as
W 2 ! W 2	 $ V 	4 $ V 4 $ W 2y � W 2;
where a projection step is used to define W 2y. We will return to this point when discussing the numerical imple-
mentation below.

4.5. Eight-node quadrature: V 8 from W 3

In three dimensions, the set of 20 moments up to third order is W 3, and we seek to define a eight-node quad-
rature based on these moments. We begin again by defining the mean particle velocity vector:
Up ¼
M1

1=M0

M1
2=M0

M1
3=M0

2664
3775; ð38Þ
and the velocity covariance matrix:
rU ¼

M2
11=M0 � U 2

p1 M2
12=M0 � Up1U p2 M2

13=M0 � Up1U p3

M2
12=M0 � U p1U p2 M2

22=M0 � U 2
p2 M2

23=M0 � Up2U p3

M2
13=M0 � U p1U p3 M2

23=M0 � Up2U p3 M2
33=M0 � U 2

p3

26664
37775; ð39Þ
so that req ¼ ðr11 þ r22 þ r33Þ=3.
The eight-node extension of the procedure described above uses the three-component vector X ¼ ½X 1X 2X 3�T

defined by
X ¼ A�1ðv�UpÞ so that v ¼ AXþUp; ð40Þ
where A ¼ LT is again defined in terms of the Cholesky decomposition of rU :
L ¼

r1=2
11 r12=r

1=2
11 r13=r

1=2
11

0 ðr22 � r2
12=r11Þ1=2 r11r23�r13r12

r1=2
11
ðr11r22�r2

12
Þ1=2

0 0 r33 � r2
13=r11 � ðr11r23�r13r12Þ2

r11ðr11r22�r2
12
Þ

� �1=2

2666664

3777775: ð41Þ
As before, the two-node quadrature formulas (Eq. (32) with i 2 ð1; 2; 3Þ) are used to find the weights and
abscissas in each direction. The eight-node quadrature approximation is then defined using the tensor product
of the one-dimensional abscissas by
V 	8 ¼ ½ðn	1;X ð1Þ1;X ð2Þ1;X ð3Þ1Þ; ðn	2;X ð1Þ2;X ð2Þ1;X ð3Þ1Þ; ðn	3;X ð1Þ1;X ð2Þ2;X ð3Þ1Þ; ðn	4;X ð1Þ2;X ð2Þ2;X ð3Þ1Þ;
ðn	5;X ð1Þ1;X ð2Þ1;X ð3Þ2Þ; ðn	6;X ð1Þ2;X ð2Þ1;X ð3Þ2Þ; ðn	7;X ð1Þ1;X ð2Þ2;X ð3Þ2Þ; ðn	8;X ð1Þ2;X ð2Þ2;X ð3Þ2Þ�: ð42Þ
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The linear system for the weights:
8 Ob
m3

122, m
weight
n	1 þ n	3 þ n	5 þ n	7 ¼ nð1Þ1
n	2 þ n	4 þ n	6 þ n	8 ¼ nð1Þ2
n	1 þ n	2 þ n	5 þ n	6 ¼ nð2Þ1
n	3 þ n	4 þ n	7 þ n	8 ¼ nð2Þ2
n	1 þ n	2 þ n	3 þ n	4 ¼ nð3Þ1
n	5 þ n	6 þ n	7 þ n	8 ¼ nð3Þ2

)

n	1 þ n	3 þ n	5 þ n	7 ¼ nð1Þ1
n	2 þ n	4 þ n	6 þ n	8 ¼ 1� nð1Þ1
n	3 þ n	4 þ n	7 þ n	8 ¼ 1� nð2Þ1
n	5 þ n	6 þ n	7 þ n	8 ¼ 1� nð3Þ1

ð43Þ
where nðiÞ1 þ nðiÞ2 ¼ 1; i 2 ð1; 2; 3Þ; has rank 4. Thus, in general, four additional equations are required to deter-
mine n	a. Three of these equations come from the second-order moments hX iX ji:
X ð1Þ1X ð2Þ1n	1 þ X ð1Þ2X ð2Þ1n	2 þ X ð1Þ1X ð2Þ2n	3 þ X ð1Þ2X ð2Þ2n	4 þ X ð1Þ1X ð2Þ1n	5
þ X ð1Þ2X ð2Þ1n	6 þ X ð1Þ1X ð2Þ2n	7 þ X ð1Þ2X ð2Þ2n	8 ¼ m2

12 ¼ 0;

X ð1Þ1X ð3Þ1n	1 þ X ð1Þ2X ð3Þ1n	2 þ X ð1Þ1X ð3Þ1n	3 þ X ð1Þ2X ð3Þ1n	4 þ X ð1Þ1X ð3Þ2n	5
þ X ð1Þ2X ð3Þ2n	6 þ X ð1Þ1X ð3Þ2n	7 þ X ð1Þ2X ð3Þ2n	8 ¼ m2

13 ¼ 0;

X ð2Þ1X ð3Þ1n	1 þ X ð2Þ1X ð3Þ1n	2 þ X ð2Þ2X ð3Þ1n	3 þ X ð2Þ2X ð3Þ1n	4 þ X ð2Þ1X ð3Þ2n	5
þ X ð2Þ1X ð3Þ2n	6 þ X ð2Þ2X ð3Þ2n	7 þ X ð2Þ2X ð3Þ2n	8 ¼ m2

23 ¼ 0;

ð44Þ
and the fourth equation comes from the third-order moment hX 1X 2X 3i8:
X ð1Þ1X ð2Þ1X ð3Þ1n	1 þ X ð1Þ2X ð2Þ1X ð3Þ1n	2 þ X ð1Þ1X ð2Þ2X ð3Þ1n	3 þ X ð1Þ2X ð2Þ2X ð3Þ1n	4 þ X ð1Þ1X ð2Þ1X ð3Þ2n	5

þ X ð1Þ2X ð2Þ1X ð3Þ2n	6 þ X ð1Þ1X ð2Þ2X ð3Þ2n	7 þ X ð1Þ2X ð2Þ2X ð3Þ2n	8

¼ m3
123: ð45Þ
The moment m3
123 and the abscissas are known. The linear system of eight equations (Eqs. (43)–(45)) can be

solved analytically.
In order to ensure that the weights are non-negative, we define
q	123 ¼ m3
123½að1� aÞbð1� bÞcð1� cÞ�1=2

; ð46Þ

where a ¼ nð1Þ1 ¼ 0:5þ c1, b ¼ nð2Þ1 ¼ 0:5þ c2, c ¼ nð3Þ1 ¼ 0:5þ c3. Then, if m3

123 P 0, we let
q123 ¼ min½q	123; abc; ð1� aÞð1� bÞc; ð1� aÞbð1� cÞ; að1� bÞð1� cÞ�: ð47Þ

Otherwise, if m3

123 < 0, we let
q123 ¼ �min½�q	123; ð1� aÞbc; að1� bÞc; abð1� cÞ; ð1� aÞð1� bÞð1� cÞ�: ð48Þ

The weights are then given by
n	1 ¼ abc� q123;

n	2 ¼ ð1� aÞbcþ q123;

n	3 ¼ að1� bÞcþ q123;

n	4 ¼ ð1� aÞð1� bÞc� q123;

n	5 ¼ abð1� cÞ þ q123;

n	6 ¼ ð1� aÞbð1� cÞ � q123;

n	7 ¼ að1� bÞð1� cÞ � q123;

n	8 ¼ ð1� aÞð1� bÞð1� cÞ þ q123:

ð49Þ
viously this choice is not unique. Any linear combination of the seven uncontrolled third-order moments could be used: m3
112, m3

113,
3
123, m3

133, m3
223, m3

233. The choice of m3
123 has the ‘‘advantage” that is symmetric in the indices and it is easy to control the resulting

s so that they are non-negative.
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Note that for cases where q123 6¼ q	123, one of the weights will be zero. Hence, in order to ensure non-negative
weights, we essentially drop Eq. (45) and set the offending weight to zero. The remaining seven weights are
determined by the other seven linear equations.

In summary, the 14 moments9 controlled with eight-node quadrature are
9 On
W 3	 ¼ ðm0;m1
1;m

1
2;m

1
3;m

2
1;m

2
2;m

2
3;m

2
12;m

2
13;m

2
23;m

3
1;m

3
2;m

3
3;m

3
123Þ:
The overall procedure can be represented as
W 3 ! W 3	 $ V 	8 $ V 8 $ W 3y � W 3;
where a projection step is used to define W 3y. Similar to two dimensions, only four of the 10 third-order mo-
ments appear in W 3	. These four moments are independent linear combinations of the 10 third-order velocity
moments.

4.6. Comparison to other methods

In the two-node quadrature method of [19,20], a different approach was used to fix the weights and abscis-
sas. The difference lies essentially in which moments are controlled. In [19,20] the eight moments
ðM0;M1
1;M

1
2;M

1
3;M

2
11;M

2
22;M

2
33;M

3
111 þM3

222 þM3
333Þ
were used. Note that this moment set does not include cross moments of second order (e.g. M2
12). In contrast,

in the new formulation the covariance matrix is exactly reproduced. This of course comes at the expense of
transporting more moments (20 instead of eight).

Note that in the previous method the number of moments is equal to the number of unknown weights and
abscissas. It might be argued that the new method could be improved for d > 1 because the number of
moments controlled is less than the number of unknowns. For example, if we consider the eight-node case
(32 unknowns), we can observe that the 14 moments in W 3	 do not include all third-order moments. However,
[28] has shown that an ‘‘optimal” moment set exists wherein 32 moments, including all moments of third
order, can be used to find the weights and abscissas in V 	8. Likewise, the eight moments in W 2	 can be aug-
mented by four additional moments: m3

112, m3
122, m4

1112, and m4
1222, to form an optimal set for computing V 	4.

In practice, the use of the optimal moment sets introduces two new issues. First, the weights and abscissas
must be found numerically by solving a nonlinear system of equations that can be poorly conditioned. Second,
the optimal moment sets contain fourth- and fifth-order moments, all of which would have to be added to W

(i.e., more moment transport equations are needed).
In order to test the feasibility of using optimal moments, we have implemented a nonlinear (NL) solver to

compute V 	4 using as initial guess the results given in Section 4.4. We found that in most cases considered (e.g.,
the Riemann problem), the NL solver was able to converge (albeit very slowly), but not always. The non-con-
vergent cases typically have weights that are very unequal. However, it was not possible to predict in advance
which moment sets would not converge. In all likelihood, the convergence problems will be more acute for V 	8
given the larger number of moments in the optimal set that are not controlled by the new method. Thus, given
that the computational cost is orders of magnitude larger and convergence is not guaranteed, it is unlikely that
a NL solver will provide a computationally efficient method for inverting moment sets. This conclusion is con-
sistent with the findings of [70]. In general, since moment inversion in one dimension is well established and
reliable [49], it will likely be much more fruitful to increase the number of nodes and the order of moments
(e.g. computing b ¼ 3d nodes requires fifth-order moments) to achieve greater accuracy.

We should note that moment-inversion method proposed here is very similar in spirit to the method pro-
posed by Yoon and McGraw [70] for aerosol applications (i.e., passive transport of a distribution function).
The principal differences are (1) in [70] they define the linear transformation matrix A in terms of the eigen-
vectors of the covariance matrix, and (2) they compute the weights without attempting to control m3

123 (i.e.,
ly 13 moments are controlled when one weight is null. However, this never occurs for any of the examples considered in this paper.
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their formula is equivalent to setting q123 ¼ 0). Of these differences, the first is the most important for the
applications considered in this work. We have, in fact, attempted to define A as done by Yoon and McGraw
[70]. However, because the velocity is a dynamic variable (i.e., the spatial fluxes are computed using the veloc-
ity abscissas), the properties of the eigenvectors make them a poor choice for d ¼ 3.10 The fundamental dif-
ficulty is the fact that the eigenvectors of rU do not vary smoothly with its components. In other words, small
changes in the correlation structure cause the orientation of the eigenvectors to jump in a discontinuous man-
ner. Thus, at two neighboring spatial locations, the resulting velocity abscissas can be completely different
(even though the moments are continuous). The net result is that the fluxes computed from the abscissas
are then discontinuous, leading to ‘‘random” fluctuations in the moments. In contrast, the Cholesky matrix
L varies smoothly with the components of rU and, hence, the fluxes are well behaved. The only known dis-
advantage of using the Cholesky matrix is that it depends on the ordering of the covariance matrix, and is
thus different for each of the six permutations of the coordinates. In essence, one direction is chosen as the
principal direction (i.e., X 1 in Fig. 1). For the examples considered in this work, this turns out not to be a
problem because of symmetry. However, it would be desirable to replace L with a smoothly varying, permu-
tation-invariant linear transform that generates abscissas close to those found using L (if it exists) and still
diagonalizes rU .

Finally, we can note that quadrature-based moment closures bear some resemblance to discrete velocity
models [10,31,51] and to the lattice Boltzmann method (LBM) [30,41], including multispeed off-lattice Boltz-
mann methods [1]; however, the differences are significant. (See Appendix B for more details.) For example, in
LBM the discretizations of velocity space, physical space and time are strongly coupled and determine the
numerical algorithm and properties [41], while quadrature-based moment methods do not directly imply a
physical-space and time discretization scheme. This can be seen from the fact that the moment equations
closed by quadrature are still written as continuous functions of physical space and time. The principal sim-
ilarity between quadrature methods and LBM is that both represent velocity phase space by a discrete set of
velocities. However, a very significant difference between the two methods is that in LBM the discrete veloc-
ities are fixed (depending on the lattice, spatial dimensions, etc. [41]), while in quadrature methods they are
variables (i.e., fields) that vary in space (velocity and physical) and time according to the local flow physics
(i.e., the velocity moments). Another important difference is the number of unknowns available to control
the moments. In LBM, only the weights are used to construct a linear mapping into the moments [41] and,
hence, the maximum number of moments that can be controlled is equal to the number of weights (e.g.,
the 13-velocity model D3Q13 corresponds to 13 moments up to third order in three dimensions). In contrast,
we have seen that by using quadrature eight velocity abscissas could, in principle, control 32 moments if all the
weights and abscissas were allowed to vary. However, because of the difficulty with inverting the nonlinear

mapping between the moments and the quadrature nodes, the full quadrature procedure is intractable. Nev-
ertheless, the partial quadrature method presented here still allows us to control 14 moments with only eight
nodes (i.e., essentially the same number of moments as with D3Q13). Another difference is that LBM uses a
linear relaxation process to represent collisions [41], while quadrature can be developed for any closed collision
operator (e.g. the Boltzmann hard-sphere collision operator [64]). Finally, we can note that as shown in [19]
quadrature-based methods can be used for arbitrary collision times (or even collision-less cases), while LBM
methods are designed for collision-dominated flows [41]. Based on these differences, we can expect that the
range of flow phenomena that can be captured using quadrature methods will be significantly larger than with
LBM (or with multispeed off-lattice Boltzmann methods [1]).
5. Numerical algorithm

The system of moment transport equations can be solved numerically for three-dimensional problems by
extending the numerical methods described in [19,20]. Here, however, we are interested in solutions that
depend on only one spatial dimension and time. Hence we will describe the method in the context of one-
dimensional fluxes.
10 The problem can be fixed for d ¼ 2 because the eigenvectors can be constructed to be independent of r12.
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5.1. Transport equations

The examples considered in this work have only one inhomogeneous direction (x1), and we can take gravity
(when needed) to be in the �x2 direction. Thus we need to define the numerical scheme in one spatial dimen-
sion (albeit with a three-dimensional velocity phase space) for the following moment equations:
oM0

ot
þ oM1

1

ox1

¼ 0;

oM1
i

ot
þ oM2

i1

ox1

¼ D1
i ;

oM2
ij

ot
þ

oM3
ij1

ox1

¼ D2
ij þ C2

ij;

oM3
ijk

ot
þ

oM4
ijk1

ox1

¼ D3
ijk þ C3

ijk:

ð50Þ
The source terms due to gravity and drag are defined by
D1
i ¼

Xb

a¼1

na
F ia

mp

� di2g
� �

;

D2
ij ¼

Xb

a¼1

na
F ia

mp

� gdi2

� �
U ja þ

F ja

mp

� gdj2

� �
Uia

� �
;

D3
ijk ¼

Xb

a¼1

na
F ia

mp

� gdi2

� �
U jaUka þ

F ja

mp

� gdj2

� �
U kaU ia þ

F ka

mp

� gdk2

� �
UiaUja

� �
;

ð51Þ
and the source terms due to collisions by
C2
ij ¼

M0

s
ðreqdij � rijÞ;

C3
ijk ¼

1

s
ðDijk �M3

ijkÞ:
ð52Þ
We shall see below that dividing the source terms into two contributions follows naturally from the effects of
gravity and drag on the weights and abscissas (i.e. they are convective processes in phase space).

5.2. The solution algorithm

The steps in the proposed solution algorithm are as follows:

(1) Initialize the weights and abscissa in V 	b and the moments in W dy.
(2) Advance in time (Dt) the moments in W d using the moment transport equations (time split):


 advance moments due to fluxes;

 advance moments due to gravity and drag;

 advance moments due to collisions.
(3) Invert the moments in W d to find the weights and abscissas in V b.
(4) Compute moments in W dy using V b (projection step).
(5) Return to step 2.

The time step Dt is set to a fraction of the smallest characteristic time (convection, drag, or collisions).



R.O. Fox / Journal of Computational Physics 227 (2008) 6313–6350 6329
5.3. A first-order, one-dimensional scheme

Because of the conservative form of Eq. (50), the finite-volume method [42] is a natural candidate for its dis-
cretization. The underlying kinetic equation (Eq. (1)) can be used for the derivation of a numerical flux formula
that ensures the robustness of the corresponding scheme. We begin by introducing the following notation for
the vector of velocity moments up to third order, their spatial flux terms, and their source terms [19,20]:
W ¼

M0

M1

M2

M3

0BBB@
1CCCA; HðW Þ ¼

M1

M2

M3

M4

0BBB@
1CCCA; SðW Þ ¼

0

D1

D2 þ C2

D3 þ C3

0BBB@
1CCCA:
Using classical notation, a fractional two-step, first-order, explicit, finite-volume scheme for Eq. (50) reads
W 	
i ¼ W n

i �
Dt
Dx
½GðW n

i ;W
n
iþ1Þ � GðW n

i�1;W
n
i Þ�;

W nþ1
i ¼ eW ðW 	

i ;DtÞ;
ð53Þ
where G is the corresponding numerical flux function (described below) and eW ðW 	
i ;DtÞ is an approximate

solution at time t ¼ Dt of the differential system
dW
dt
¼ SðW Þ with W ð0Þ ¼ W 	

i : ð54Þ
The advantage of a fractional-step algorithm is the possibility of using a quasi-analytic solution for the second
step of the scheme to handle the stiffness of the source terms. Due to their forms, we will split the contributions
to the source terms into two parts: (i) drag and gravity; (ii) collisions.

5.3.1. Drag and gravity

To compute the first part, we note that the drag and gravity terms in Eq. (51) are equivalent to
dna

dt
¼ 0;

dUia

dt
¼ F ia

mp

� gdi2:
ð55Þ
These expressions can be explicitly solved to find the changes in the weights and abscissas due to drag and
gravity:
n		a ¼ n	a;

U 		ia ¼ expð�Dt=saÞU 	ia þ ½1� expð�Dt=saÞ�ðU fi � gdi2saÞ;
ð56Þ
where n	a and U 	ia are the weights and abscissas found from W 	
i using quadrature, and sa is the corresponding

drag time (see Eq. (4)) evaluated at the beginning of the step. The results in Eq. (56) are then employed to
compute the moments W 		

i using projection.

5.3.2. Collisions

The next step is to compute the contribution due to collisions:
dW
dt
¼ CðW Þ with W ð0Þ ¼ W 		

i : ð57Þ
This can be done explicitly:
W 			
i ¼ expð�Dt=siÞW 		

i þ ½1� expð�Dt=siÞ�DðW 	
i Þ; ð58Þ
where si is the local collision time and DðW Þ denotes the vector of equilibrium moments. To finish up, quad-
rature is used to compute nnþ1

a and Unþ1
ia from W 			

i , and W nþ1
i is computed using projection.
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5.4. Kinetic-based definition of the fluxes

Using the ideas of kinetic-based schemes [54,53], it is natural to adopt the following expression for the
numerical flux function (see Eq. (18)):
GðW l;W rÞ ¼ QþðW lÞ þ Q�ðW rÞ ð59Þ

with
QþðW lÞ ¼
Xb

a¼1

nal maxð0;U 1alÞ

1

U ial

U ialUjal

U ialU jalUkal

0BBB@
1CCCA ð60Þ
and
Q�ðW rÞ ¼
Xb

a¼1

nar minð0;U 1arÞ

1

Uiar

UiarUjar

UiarU jarU kar

0BBB@
1CCCA; ð61Þ
where the indices (i; j; k) on the velocity abscissas in the column vector (of length 20) on the right-hand side are
chosen to represent the moments up to third order in W d . Note that although these expressions have been writ-
ten for fluxes in the x1 direction, the extension to other directions is straightforward. As noted earlier, the use
of kinetic-based fluxes is a key difference between quadrature-based moment methods and ‘‘standard” mo-
ment methods.

5.5. Boundary conditions

In order to evaluate the fluxes in Eq. (59), we will need to specify boundary conditions. Without loss of
generality, we can consider the left-hand side of the domain and denote the boundary cell by i ¼ 0. From
the definition of the fluxes, we can observe that it suffices to specify the weights and abscissas at i ¼ 0. For
the examples in Section 6, we will use reflective boundary conditions:
na

U 1a

U 2a

U 3a

0BBB@
1CCCA

i¼0

¼

na=ew

�ewU 1a

U 2a

U 3a

0BBB@
1CCCA

i¼1

; ð62Þ
where 0 < ew 6 1 is the coefficient of restitution for the wall. If needed, the moments at i ¼ 0 can be computed
from Eq. (62). Note that other types of boundary conditions can be readily accommodated. For example, if
the wall distribution function fw is known, then it suffices to compute its moments W i¼0 and the corresponding
weights and abscissas. The latter would then be used in place of Eq. (62). In fact, because quadrature methods
use realizable weights and abscissas to represent the moments, such methods can employ any boundary con-
dition used in a Lagrangian method (e.g., in DSMC [6]).
6. Example applications

We will consider three example applications that test different aspects of the proposed closure. The first
example, the Riemann shock problem, tests the ability of the method to capture shock propagation in non-
isothermal flows at arbitrary Knudsen and Mach numbers. However, we should emphasize that this is not
our target application and hence we do not expect the quadrature-based closure to perform as well as models
specifically designed to treat shocks [4,6,13,16,17,34,41,52–54,62]. The second example, impinging particle jets,
includes the fluid drag force and demonstrates the ability of the method to capture particle trajectory crossing
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[19,20] with different collision frequencies (i.e. from no collisions to instantaneous collisions). The third exam-
ple, vertical gas-particle channel flow, tests all aspects of the model (gravity, drag, collisions, bounded domain)
needed to describe dilute gas-particle flows.

6.1. The Riemann problem

The first test problem is the Riemann shock problem described in [4] with an initial density ratio of
q4=q1 ¼ 3:093, which corresponds to a Mach number of 1.25. For this problem the mean velocity is initially
zero everywhere, and the velocity variance (temperature) is normalized to unity everywhere. (Non-uniform
temperature distributions pose no additional difficulties.) The drag and gravity terms are not present in this
flow. In the limit where the collision time is null (s ¼ 0), the moment transport equations reduce to the Euler
equation for an inviscid compressible fluid. As discussed in [4,16,17,52], the time evolution of the system is well
known and includes a left-moving rarefaction wave (or expansion fan), a contact surface, and a right-moving
shock wave. The velocity of the shock wave in the Euler limit can be computed from the density ratio and the
Mach number. When the collision time is finite (s > 0) the structure of the solution changes and the temper-
ature in the shock is no longer isotropic (i.e., the velocity variance in the direction of the flow is larger than the
variances in the normal directions). In the absence of collisions (s ¼ 1) particles move without changing their
velocity. Note that because we are using a simple BGK collision model, no attempt will be made to relate s to
a molecular collision time scale. (See [16] for a discussion of the BGK model.) Instead, we will run the model
with different values of s ¼ j=M0 to investigate the numerical stability of the quadrature-based moment
closure.

For simplicity, we will take the normalized flow domain to be 0 < y < 1 (y ¼ x1) and will stop the simula-
tion before the shock wave reaches a wall (i.e. the wall boundary conditions have no effect on the results). The
numerical algorithm is run with a CFL number of 0.5 and 400 uniformly spaced grid cells. (The CFL number
is defined in terms of the largest magnitude of all velocity abscissas [20].) Grid refinement studies showed no
further improvements on a finer grid. Cases with j ¼ 0 are run with a time step determined by the CFL con-
dition and the collisions reset the moments to the equilibrium values at the end of the time step (but before
inverting the moments to find weights and abscissas). Cases with finite j use a time step found from the min-
imum of the CFL time and j=10. Note that because the moment equations are solved directly in conservative
form and the quadrature inversion procedure exactly conserved the moments, the lower-order moments are
conserved for all values of j. (See discussion in [4,17,52,62] on difficulties with conserving moments with other
methods.) Finally, we should note that the model can be solved on a personal computer with run times on the
order of seconds.

The structure of the flow can be seen from the temperature contour plots in Fig. 2. For j ¼ 0 the classical
shock structure is found and agrees well with the known solution to the Euler equation [4]. For j ¼ 0:1 the
shock and contact surface broaden and the shock speed is reduced. Finally, for j ¼ 1 the flow structure is
very different with symmetric high temperature waves traveling to the left and right, separated by a low-tem-
perature zone.

An example of the 20 moments is shown in Fig. 3 for the case j ¼ 0 at time t ¼ 0:23 (i.e., at the end of the
simulation). It can be noted that due to the symmetry of the Riemann problem, 12 of the moments are null.
(The eight non-zero moments are M0, M1

2, M2
11, M2

22, M2
33, M3

112, M3
222, and M3

233.) Note that because the off-
diagonal second-order moments are null, the Cholesky decomposition (L) is diagonal. This implies that the
third-order moments controlled by the quadrature method are M3

111, M3
222, M3

333, and M3
123, while the other

third-order moments are found by projection. Hence, the results in Fig. 3 show that the projection operation
does not introduce errors in moments that should be null by symmetry. Finally, we can note that if one is only
interested in solving the Riemann problem the computational efficiency can be increased by solving only for
the non-zero moments needed for quadrature inversion.11
11 A better alternative for the Riemann problem would be to rewrite the density function into two separate univariate density functions as
proposed by Chu [16] and done, for example, in [52]. One-dimensional quadrature could then be used for each density function (i.e. two
sets of weights and abscissas). Because 1D quadrature can use the PD algorithm [49] it would be straightforward to go to higher-order
moments.
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In Fig. 4 we present results for selected flow quantities with j ¼ 0:01 at t ¼ 0:23. In the first row, the
weights and velocity abscissas computed from the moments using quadrature are presented. Note that due
to the relatively small value of j all eight weights are nearly equal. (For j ¼ 0 all weights are equal.) Likewise,
the U and W abscissas exhibit a high degree of symmetry, while the V abscissas are asymmetric due to the
mean velocity in the y direction. Note that due to the diagonal form for L the velocity abscissa vectors lie
at the eights corners of a cube in velocity phase space centered at the mean velocity. Hence each curve in
the plots of the abscissas actually corresponds to four abscissas. In the second row of Fig. 4 the density
q ¼ M0 and the mean velocities are plotted. As expected, the U and W components are null (due to symmetry)
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Fig. 5. The Riemann problem with Ma ¼ 1:25 and j ¼ 0:1 at t ¼ 0:23. The density q is shown in the second row, first column.
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and the V component is positive between the expansion wave and the shock front. In the third row of Fig. 4
the anisotropy components of the velocity, defined by
12 Th
aij ¼ ðrij=T � dijÞ i; j ¼ u; v;w;
where T ¼ ðT u þ T v þ T wÞ=3 and T i ¼ rii, are plotted. The temperatures in each direction and pressure
(p ¼ qT ) are also shown. Note that because j is finite, the diagonal anisotropy components are non-zero in
the shock wave and in the expansion fan. This non-equilibrium behavior is also observed in the temperature
plots. The reader can compare the results in Fig. 4 to those presented in Fig. 10 of [4], and it can be clearly
observed that the quadrature-based moment closure captures the essential features of finite Knudsen number
flow.12

Results for progressively larger values of j are shown in Figs. 5–7. For j ¼ 0:1 (Fig. 5) it can be seen that
the weights are unequal – a clear sign that the flow is far from equilibrium. The weights corresponding to V

abscissas moving in the positive direction exhibit a local maximum near y ¼ 0:75, which is due to the forma-
tion of a delta-shock [7,15]. This delta-shock is caused by the form of the forward-moving V abscissa (i.e. the
velocity is higher upstream). The formation of delta-shocks is a sign that the number of V abscissas available
to describe the flow is insufficient. (Recall that we use only two abscissas in each direction.) A higher-order
(than third) moment closure would be required to increase the number of quadrature nodes. For j ¼ 1
(Fig. 6) the delta-shock is not observed since particle collisions are relatively infrequent. The same is true
for j ¼ 10 where the velocity abscissas remain very close to their initial values. For this case, the weights
are transported to the left (right) with their own velocities. The shock wave seen with j ¼ 0 is completely
absent and the flow is close to the free-molecular regime. Note that because the density function is represented
by only two abscissas in each direction of phase space, the weights separate as two moving steps. By increasing
the order of the quadrature, more abscissas would be introduced and the density field would be smoother.
e Kundsen number for this case will be proportional to j.
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Fig. 7. The Riemann problem with Ma ¼ 1:25 and j ¼ 10 at t ¼ 0:23. The density q is shown in the second row, first column.
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Fig. 6. The Riemann problem with Ma ¼ 1:25 and j ¼ 1 at t ¼ 0:23. The density q is shown in the second row, first column.
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Fig. 9. The Riemann problem with density ratio q4=q1 ¼ 8:333 and j ¼ 0:1 at t ¼ 0:23. The density q is shown in the second row, first
column.
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The fluid-particle drag will be modeled by Stokes drag (Eq. (6)) with sp ¼ 2, which corresponds to a Stokes
number of St ¼ sp=sf ¼ 2. For this Stokes number, the particles will not be able to decelerate fast enough
to avoid crossing the centerline (y ¼ 0) (i.e. they are underdamped). As shown in [19,20], the case with no col-
lisions (j ¼ 1) exhibits particle trajectory crossing (PTC) where the local V particle velocity is multi-valued.
(See [32,33,39,40,44,45,67] for examples of this type of behavior in other non-collisional physical systems.)
Essentially, in this limit, each velocity abscissa obeys its own conservation equation and the weights are ad-
vected without change. (In the numerical implementation, the weights change only due to numerical diffusion.)
For finite j, the weights and abscissas are coupled through the particle–particle collision term (making the
computational problem considerably more challenging), and it is of great interest to see how the PTCs are
altered (albeit in the elastic limit assumed by the BGK model).

In this example, the spatial grid and time step are handled the same way as in the Riemann problem. The
initial particle velocities were set to zero mean with RMS values of 1� 10�3 everywhere.13 The initial weights
are set to 1� 10�10 everywhere except for 0:5 < jyj < 0:6, where the weights are set to 1/8. This results in an
M0ðyÞ that represents two particle planes symmetric with respect to the origin and initially at rest. The particle
planes are accelerated by the fluid drag towards the origin. At t ¼ 1:81 the particle planes exhibit the maxi-
mum degree of overlap (i.e., if j ¼ 0 they are each centered at the origin). Note that because V f is dependent
on the initial particle location, all particles in the same plane are not accelerated uniformly. Thus, small
amounts of particle velocity variance are created in each plane before collision. Nevertheless, this variance
is negligible compared to that created when the particle planes overlap (due to the fact that they essentially
have the opposite velocities).

Figs. 10–12 show example results for the number density q and the V p particle velocity at two different times
(t ¼ 1:81 (maximum overlap) and t ¼ 2). Note that by symmetry the mean velocity must be zero at y ¼ 0.
13 Non-zero RMS is needed to ensure that the velocity covariance matrix is positive definite.
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Fig. 10. Impinging particle planes with j ¼ 1. Left: number density. Right: V p velocity of particles. Maximum overlap occurs at t ¼ 1:81.
At t ¼ 2 the planes have almost completely crossed through each other for the first time.
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Before collision, the mean velocity has the same sign as V f for all j, while after collision the number density
and velocity depend strongly on j. For j ¼ 1 (weakly collisional), the results are shown in Fig. 10. At t ¼ 1:81
the mean density is roughly equivalent to two superimposed non-colliding planes, and at t ¼ 2 the two planes
are nearly separated. Note that the mean velocity at t ¼ 2 is negative for the plane on the left and positive for
the plane on the right. The two planes will continue to move apart until the drag term changes the signs of the
corresponding mean velocity, after which the planes will move back and re-collide. The results for j ¼ 0:1
(moderately strong collisions) are shown in Fig. 11. At t ¼ 1:81 one can observe that the peak in the number
density is higher, indicating that the velocity has been significantly impacted by collisions. At t ¼ 2 it can be
seen that the two particle planes do not separate, rather they remain ‘‘stuck” together and only partially cross.
Likewise, the velocity at t ¼ 2 has a very different form near y ¼ 0 than for j ¼ 1. This form suggests that the
planes have partially ‘‘rebounded” off each other and reversed direction. As j is further decreased, the ten-
dency toward rebound becomes more and more pronounced. This can be seen from the results in Fig. 12
for j ¼ 0:01. Note that at t ¼ 1:81 the number density in Fig. 12 has the form of two peaks smashed against
a virtual wall located at the origin. In the Euler limit (j ¼ 0) the behavior is very similar to j ¼ 0:01.

Finally, note that the rebound velocity (i.e. the peak V p velocity at the leading edge of the plane) grows very
rapidly. For example, in the Euler limit (see Fig. 13), the rebound velocity is nearly jV pj ¼ 4 at t ¼ 2:1 and
continues to grow rapidly with time. Physically, the rebound velocity is generated by the transformation of
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‘‘thermal” energy created during the collision into translational energy. In other words, the maximum particle
temperature T occurs at the peak rebound velocity, in front of which T is near zero. The rebound velocity thus
corresponds to a shock wave traveling from the more dense to the more dilute particles. Because the collisions
are assumed to be elastic, all of the energy in the original system must be radiated outward by the shock wave.
Real particle systems have some degree of in-elasticity and thus it will be interesting to repeat these examples
with a collision model that dissipates some thermal energy. Nevertheless, the numerical implementation of the
quadrature-based moment method is robust and exhibits no anomalous behavior for this example.

6.3. Vertical channel flow

For this example, we consider a fully developed, wall-bounded channel flow where the statistics depend
only on t and y [37,57,61]. The low solids concentration and large particle inertia allow us to neglect the fluc-
tuating gas velocity and the influence of particles on the mean gas velocity [57]. The gas is flowing upward
(positive x) against gravity with a given velocity Uf ¼ ½U fðyÞ; 0; 0� where14
14 This approximation for the velocity profile was chosen to illustrate the method. A more accurate expression would be found by solving
a turbulence model for the gas phase.
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U fðyÞ ¼ U max½1� ð2y=W Þ2�0:2: ð63Þ

The channel width is W ¼ 4� 10�2 m. The maximum gas velocity is U max ¼ 18 m=s. We will be interested in
solutions with reflective boundary conditions (U 1a ! �U 1a) at y ¼ �W =2 and y ¼ W =2, which correspond to
purely elastic walls (ew ¼ 1). The physical properties of the gas phase are kinematic viscosity mf ¼
1:515� 10�5 m2=s and density qf ¼ 1:205 kg=m3. For the solid phase, two types of particles are used: (1)
qp ¼ 1032 kg=m3, dp ¼ 1:5� 10�3 m; (2) qp ¼ 1038 kg=m3, dp ¼ 0:406� 10�3 m. These correspond to (1) par-
ticle volume Volp ¼ 1:77� 10�9 m3, particle mass mp ¼ 1:82� 10�6 kg; and (2) Vol p ¼ 3:50� 10�11 m3, mp ¼
3:64� 10�8 kg. The average volume fractions hai of interest are 10�3 and 4� 10�2 [57]. The average number
density is related to the average volume fraction by hM0i ¼ hai=Volp.

For this example, the collision rate will be modeled by the product of the collision cross-section, the particle
RMS velocity, and the number density:
1

s
¼ pd2

pð3T Þ1=2M0 ¼ 10:392
a
ffiffiffiffi
T
p

dp

;

where a ¼ pM0d3
p=6 is the particle volume fraction and T is the particle temperature. In the following, we will

make the moment transport equations dimensionless using W =2, Umax, and hai. The dimensionless parameters

appearing in the moment transport equations are g	 ¼ gW =ð2U 2
maxÞ ¼ 6:06� 10�4, s	p ¼ 2spUmax=W ¼ 900sp,

Re	p ¼ d pUmax=mf ¼ 1:188� 106dp, and s	 ¼ 2sU maxV p=ðW haiÞ ¼ 4:811dp=ð
ffiffiffiffiffi
T 	
p
haiÞ, where T 	 ¼ T=U 2

max. For

the two types of particles, the characteristic times can be written as (1) s	p ¼ 6344, Re	p ¼ 1782,

s	 ¼ 7:217� 10�3=ð
ffiffiffiffiffi
T 	
p
haiÞ and (2) s	p ¼ 468:6, Re	p ¼ 482:4, s	 ¼ 1:953� 10�3=ð

ffiffiffiffiffi
T 	
p
haiÞ. In dimensionless

form, the flow domain of interest is �1 6 y 6 1 and Uf ¼ ½ð1� y2Þ0:2; 0; 0�. Because the terms on the right-
hand sides of the moment transport equations are small relative to the left-hand sides, we can expect that this
flow will be dominated by the transport terms. In particular, the quadrature-based closure of the fourth-order
moments will have a strong influence on model predictions.

Note that by symmetry the following seven moments are null for this example:
M1
3; M2

13; M2
23; M3

113; M3
123; M3

223; M3
333:
Thus it would suffice to consider only the 13 remaining moment equations. Nevertheless, we will solve for all
20 moments and use the symmetry condition to verify the code. Note also that the mean particle velocity and
the velocity covariance matrix simplify to
Up ¼
Up

V p

0

264
375 and rU ¼

ru ruv 0

ruv rv 0

0 0 rw

264
375: ð64Þ
The Cholesky decomposition matrix L will thus contain only one off-diagonal component (L12). Finally, we
should note that a particle Stokes number can be defined as
St ¼ s	p=ð1þ 0:15ðRe	pÞ
0:687Þ:
Thus, the Stokes numbers for the two particles sizes are (1) St ¼ 238 and (2) St ¼ 40:9. (Hereinafter we will
refer to the two cases by their Stokes numbers.) While these large Stokes numbers justify neglecting the
gas-phase velocity fluctuations, they also imply that the particles will behave as a rarefied (elastic) granular
gas. Hence, non-equilibrium effects will be significant in the dilute limit (i.e. small hai).

For this flow, a trivial steady state exists where the particle temperature T is null and the mean particle
velocity is equal to the local slip velocity. For this steady state M0 is time invariant. The quadrature-based
moment closure predicts this steady state if the particle temperature is initially set to zero. On the other hand,
if the simulation is initialized with 0 < T , then the temperature will evolve to a non-zero state for T where Up

differs significantly from the slip velocity. Physically, a non-zero T will cause particles to collide with the walls.
The reflective boundary condition then causes the temperature near the wall to increase rapidly (causing more
wall collisions). In this system, the temperature is dissipated by the fluid drag whose characteristic dimension-
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less time is St. Velocity fluctuations in the U component are generated by fluctuations in the V component
acting on the U p velocity gradient [57]. Thus, the collisions are important because they transfer ru into rv,
which ensures the production of ru by the source term ruvdUp=dy. In other words, without collisions ruv would
decay to zero, as would the particle temperature. As we shall see below, in dilute flows collisions are relatively
infrequent. Thus, the final state will be reached relatively slowly (many characteristic times), making the prob-
lem relatively expensive to solve using time marching. Moreover, due to the large Stokes number (i.e. slow
energy decay rate), the initial transients can be quite sensitive to the initial conditions. Essentially, the initial
behavior is made up of traveling waves that reflect off of the walls until they are slowly damped by the drag.

In order to achieve an initial steady-state solution without excessively small time steps, we have first started
the simulation with Up constant, equal to the slip velocity at y ¼ 0, and T ¼ 1� 10�4 (i.e. non-zero but smaller
than the steady-state temperature). In addition, we have enhanced the collisions by setting hai ¼ 0:5, which
stabilizes the initial wave dynamics. The simulation is then run to t ¼ 1000 (i.e. many characteristic drag times)
to achieve a steady-state solution that is reasonably close to desired one. A relatively good indicator of sta-
tionary is when V pðyÞ is nearly zero. (As seen in the Riemann problem, waves cause transient behavior in
V p that is dissipated in this system by drag.) The desired solution is then found be lowering hai to the target
value (i.e. increasing the collision time s	) and running until the final state is attained. Note that there is no
guarantee that a steady-state solution exists for this problem. As described previously, the simulations are
found to be grid independent with 400 equally-spaced grid cells. We should note, however, that the stationary
solution (when it exists) can be adequately represented on a coarser grid.

We begin by considering the case of St ¼ 40:9. For this case, a stationary solution was observed for
hai ¼ 0:02, but not at hai ¼ 0:01. The latter yields a highly non-equilibrium, time-dependent solution with
traveling density and V velocity waves. Results for the 20 moments are shown in Fig. 14 for hai ¼ 0:02.
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0.8 at the walls and peaks at the center (i.e. the particle wall-slip velocity is significant). The mean horizontal
solids velocity V p is very small, but non-zero. Since at steady state one would expect V p to be null, this non-zero
value suggests that the system is still (slowly) approaching the stationary state. The anisotropy coefficients and
the temperatures all show significant non-equilibrium values. Finally, the pressure (p ¼ qT ) has a form very
similar to M2

33 and suggests that q is nearly proportional to 1=T , except near the walls and the centerline.
The flow behavior observed for hai < 0:02 is time dependent and takes the form of density waves (or delta-

shocks) that traverse back and forth across the channel. These waves appear to be correlated with V velocity
‘‘shocks” similar to the one observed in Fig. 5 for the Riemann problem. For the channel flow, the reflective
wall boundary conditions send the shock back into the channel, and eventually the entire channel is filled with
such structures. We should note that similar behavior has been reported in 1D two-fluid model simulations
(e.g. [3]) that use a lower-order moment closure (i.e. equivalent to the compressible flow equation). In the pres-
ent context, we know that the transient behavior starts when the flow is significantly non-equilibrium at the
centerline. Because our moment closure stops at third order, we are unable to capture strongly non-equilib-
rium behavior (unless we extend the closure to higher order by increasing the number of nodes). We are thus
inclined to interpret the unsteady behavior as unphysical (although mathematically correct). This interpreta-
tion is consistent with earlier work [20] where a two-node quadrature model was compared to Lagrangian sim-
ulations for a particle-laden Taylor–Green flow. For that flow, delta-shocks were observed in the Eulerian
model at moderately large Stokes numbers that were not present in the Lagrangian simulations.

We next consider the case of St ¼ 238. For this flow, unsteady behavior is observed for hai < 0:20, presum-
ably because the larger Stokes number decreases the energy dissipation due to drag. Example results for
hai ¼ 0:19 are shown in Fig. 16. The large Stokes number creates a significant slip velocity (jUp � U f j �
0:38) at the centerline, as well as a large wall-slip velocity. The small amplitude traveling waves are clearly seen
in V p. The amplitude of these waves rapidly increase with decreasing hai. For this example, the weights are
more nearly equal, indicating that the flow is not too far from equilibrium. This can also be seen from the diag-
onal anisotropy coefficients whose magnitudes are approximately 10 times smaller than in Fig. 15. Likewise,
the temperatures are nearly equal and the pressure is almost constant. In other words, the density q is inversely
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proportional to T. Finally, we should note that this case would suggest that the unsteady behavior is more
related to the degree of energy dissipation through drag than to non-equilibrium moments. In real particulate
systems, particle–particle and particle-wall collisions are inelastic, thereby leading to other routes for energy
dissipation. We will explore this subject in more detail by using a dissipative collision term and dissipative wall
boundary conditions in future work.

7. Conclusions

We have derived a quadrature-based third-order moment method for computing dilute gas-particle flows
governed by the kinetic equation with gravity, fluid drag and particle–particle collisions. Overall, the proposed
numerical scheme appears to be robust and yields physically realistic results for the examples considered (Rie-
mann shock problem, impinging jets, and channel flow). The key characteristics of the proposed algorithm are
as follows.

(1) Unlike previous work on moment methods [33,39,44,56,67] and on level sets [40,45] for representing
multi-valued solutions to the kinetic equation, the quadrature-based method provides a consistent
approximation of the density function and the collision term for continuous distributions in velocity
phase space. In other words, much like DSMC [6], quadrature methods represent a continuous density
function by a finite sets of ‘‘particles” (i.e. nodes). The weights and locations (abscissas) of each node
are determined by forcing them to agree with as many moments as possible. (In this work, a maximum
of 14 moments up to third order.) While we have only considered closure at third order (i.e. two quadra-
ture nodes in each direction of velocity phase space), extension to higher order is possible and will be
investigated in future work.

(2) The closure of nonlinear terms in the moment transport equations is based on a quadrature representa-
tion of the density function. This feature allows us to provide a consistent closure for the fluid-particle
drag term and the collision term [64]. However, any other nonlinear term in the kinetic equation could be
closed in a similar manner.

(3) A moment-inversion algorithm was developed based on Cholesky decomposition of the velocity covari-
ance matrix and repeated application of one-dimensional quadrature [49]. Because the latter is well
defined and computationally efficient to high order,16 the extension to higher-order moment closures
should be possible. The Cholesky decomposition was found to be preferable to the eigenvectors [70]
because the latter do not vary continuously with the components of the covariance matrix, leading to
non-continuous fluxes in physical space. At this point, the only open question concerning extension
of the inversion algorithm to more nodes appears to be what is the best choice of the third- and
higher-order moments needed to define the linear system used to solve for the weights. We should note
that this is not a trivial question, and that the response may be problem dependent. For example, for
non-colliding particles a set of moments consistent with the symmetry of traveling waves might be
appropriate [56], while for colliding particles another set of moments that better captures deviations
from Maxwellian distribution might be more accurate [28].

(4) The spatial transport terms in the moment equations are treated using a kinetic description, and hence a
gradient-diffusion closure is not invoked to close these terms. This feature makes quadrature-based
moment closures distinctly different from all other moment-based closures valid for small perturbations
from equilibrium. In fact, because the weights are always non-negative, the quadrature-based moment
closure remains realizable for arbitrary Knudsen number. This is an important property because it
allows us to define the kinetic-based fluxes for arbitrary-order moments.

(5) Because quadrature-based closures use directly the moment transport equations, and not a discretized
version of the Boltzmann equation, they allow us to conserve mass, momentum and energy for arbitrary
Knudsen number (including Kn ¼ 0). Any conservation errors will result from the numerical method
used to discretize the moment equations. Moreover, unlike DSMC and other statistical methods [36],
16 We have gone as high as 8-node quadrature for uni-variate cases in previous work, which requires moments up to 15th order.



6346 R.O. Fox / Journal of Computational Physics 227 (2008) 6313–6350
quadrature-based closure do not suffer from statistical noise (even in the limit of one node). In this work
we have used a first-order kinetic scheme to compute the moment fluxes, but higher-order schemes
should also be applicable [20]. An important consideration when advecting moments with higher-order
schemes is that the moments must remain realizable [50,68]. This property must be demonstrated before
higher-order schemes can be used with the velocity moment equations.

(6) In principle, quadrature-based moment closures can be used to solve any flow problem that is modeled by
a ‘‘Boltzmann-like” equation for the velocity distribution function. The only requirement is that the equa-
tion be closed in terms of the density function (i.e., the collision term involving the two-point density func-
tion must first be closed in terms of f). Although we have employed the BGK approximation (which is
closed at the level of the moments), any one-point collision term could be used with quadrature-based
closures. For example, the Boltzmann hard-sphere collision term has been used by Vedula and Fox [64].

(7) While direct Boltzmann solvers [4,12,13,52,53] should be more accurate than quadrature-based moment
closures for difficult problems, the degree of accuracy attained at equivalent computational cost will
likely favor quadrature-based methods. (All simulation results presented here can be performed on a lap-
top computer.) Nevertheless, further work is needed to investigate the range of applicability of quadra-
ture-based moment closures (e.g. higher Mach numbers in the Riemann problem, two-way coupling in
gas-particle flows, etc.) and to optimize the numerical methods.
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Appendix A. Linear transformations and translations of moment sets

Consider a non-singular linear transformation L of a vector /:
/	 ¼ L/ ()
/	1
/	2
/	3

264
375 ¼ L11 L12 L13

L21 L22 L23

L31 L32 L33

264
375 /1

/2

/3

264
375: ð65Þ
Let m	ðkÞ denote the moments of /	 and mðkÞ denote the moments of / for a particular set of exponents
k ¼ ðk1; k2; k3Þ. Using multinomial expansions, it can be easily shown that m	 is related to m by
m	ðk	1; k	2; k	3Þ ¼
Xk	1

j1¼0

Xj1

i1¼0

Xk	2

j2¼0

Xj2

i2¼0

Xk	
3

j3¼0

Xj3

i3¼0

k	1
j1

� �
j1

i1

� �
k	2
j2

� �
j2

i2

� �
k	3
j3

� �
j3

i3

� �
L

k	
1
�j1

11 Lj1�i1
12 Li1

13L
k	

2
�j2

21 Lj2�i2
22

� Li2
23L

k	
3
�j3

31 Lj3�i3
32 Li3

33dk1;k
	
1
þk	

2
þk	

3
�j1�j2�j3

dk2;j1þj2þj3�i1�i2�i3dk3;i1þi2þi3 mðk1; k2; k3Þ; ð66Þ
where dk;j is the Kronecker delta. Letting m	 and m denote column vectors containing the distinct moments in
a given moment set:
m	 ¼

m	ð0; 0; 0Þ
m	ð1; 0; 0Þ
m	ð0; 1; 0Þ

..

.

266664
377775; m ¼

mð0; 0; 0Þ
mð1; 0; 0Þ
mð0; 1; 0Þ

..

.

266664
377775; ð67Þ
we can observe that Eq. (66) defines a square transformation matrix (m	 ¼Mm) with the following properties:

(1) M is full rank.
(2) M ¼ diagðM0;M1; . . .Þ is block diagonal where the size of the square block Mc equals the number of

moments of order c.
(3) Mc will be diagonal if and only if L is diagonal.
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Letting m	c (mc) denote of the components of m	 (m) corresponding to moments of order c, it then follows
that m	c ¼Mcmc. In other words, the moments of /	 of order c are a linear combination of the moments of /

of order c. In general, unless L is diagonal, a particular moment of /	 of order c will be a linear combination of
all moments of / of order c.

Finally, we can note that a simple translation:
17 Th
18 DQ

proced
/y ¼ /þ l ()
/y1
/y2
/y3

264
375 ¼ /1

/2

/3

264
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l2

l3

264
375; ð68Þ
relates the moments sets by
myðky1; k
y
2; k

y
3Þ ¼

Xky
1
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3 mðk1; k2; k3Þ: ð69Þ
Thus a moment of /y of order c will be a linear combination of only one moment of / of order c. However, in
general, it will depend on lower-order moments of /. Hence, a linear transformation combined with a trans-
lation will couple all moments of order c and smaller. The moment sets used to define the quadrature formulas
in the main text can be computed by successive application of Eqs. (69) and (66).

Appendix B. Relationship between the quadrature-based moment method and off-lattice Boltzmann methods

As discussed in the main text, quadrature-based moment methods determine the weights and velocity
abscissas by forcing agreement with lower-order velocity moments. In off-lattice Boltzmann methods (oLBM)
[1] the velocity abscissas are fixed (e.g., roots of a Hermite polynomial) and only the weights are allowed to
vary. Note that the examples considered in the main text correspond to non-isothermal flows, which are dif-
ficult to treat with LBM [41]. Isothermal (or more accurately low Mach number) cases can be treated by fixing
the particle temperature in the equilibrium distribution feq. For simplicity, we will consider only the one-
dimensional case here.17 In order to distinguish between the two methods, we will denote the oLBM velocities
by ca and the weights by fa, where a 2 ð1; . . . ;NÞ denotes the nodes. We can then define the moment of order k

by
mkðx; tÞ ¼
XN

a¼1

ck
afaðx; tÞ; ð70Þ
where the ca are fixed. Note that there are N weights and hence exactly N moments can be reproduced by
oLBM (i.e., k 2 ð0; . . . ;N � 1Þ). A discrete Boltzmann equation must then be derived for computing the un-
known weights. This is most easily accomplished using DQMOM [46,29] as described next.18

Starting from the one-dimensional Boltzmann equation with BGK collisions:
otf þ oxðcf Þ ¼ 1

s
ðfeq � f Þ; ð71Þ
the corresponding moment equations are
otmk þ oxmkþ1 þ
1

s
mk ¼

1

s
meq

k ; ð72Þ
where meq
k are the known moments of the Maxwellian distribution. Substituting Eq. (70) into (72) yields
e extension to higher-dimensions is straightforward [46], but the notation is cumbersome.
MOM was derived to find transport equations for both the weights and abscissas. However, it is straightforward to modify the
ure for fixed abscissas.
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XN

a¼1

ck
a otfa þ caoxfa þ

1

s
fa

� �
¼ 1

s
meq

k ; ð73Þ
which must hold for k 2 ð0; . . . ;N � 1Þ. Defining the discrete Boltzmann equation by
otfa þ caoxfa ¼
1

s
ðf eq

a � faÞ; ð74Þ
we see that the equilibrium velocity weights must satisfy
XN

a¼1

ck
af eq

a ¼ meq
k ; ð75Þ
which is a linear system of the form VN ½f eq
a � ¼ ½m

eq
k � where VN is an N � N Vandermonde matrix. For example,
V2 ¼
1 1

c1 c2

� �
and V3 ¼

1 1 1

c1 c2 c3

c2
1 c2

2 c2
3

264
375: ð76Þ
In the linear system, ½meq
k � is the vector of equilibrium moments for k 2 ð0; . . . ;N � 1Þ. If the velocities are dis-

tinct, then VN is nonsingular. It then follows that the equilibrium velocity weights are uniquely determined by
½f eq
a � ¼ V�1

N ½m
eq
k �: ð77Þ
Thus, for any distinct set of velocities ca, Eq. (74) can be solved numerically using the kinetic-based algorithm
discussed in the main text (i.e., the velocities need not lie on a regular grid in velocity space). The resulting oLBM
will be well defined as long as the fa remain non-negative. Note that there is no guarantee that the weights will
remain non-negative for an arbitrary choice of ca (or even for a highly isotropic choice like the roots of Hermite
polynomial). In contrast, the quadrature-based moment method introduced in the main text is guaranteed to
produce non-negative weights [49].19 In short, a key feature of the quadrature-based method is that the velocity
abscissas adapt to the underlying velocity distribution function, including cases were the mean velocity is much
greater than the speed of sound. This is not a feature shared by oLBM where the velocities are fixed.

It is well known [41] that one-dimensional LBM with N ¼ 2 does not work. From Eq. (77) we see that20
f eq
1

f eq
2

� �
¼ 1

c2 � c1

c2 �1

�c1 1

� �
q

qu

� �
¼

f1

f2

� �
; ð78Þ
hence the collision term will not affect the discrete Boltzmann equation. This is, of course, entirely consistent
with the fact that momentum is conserved. In contrast, with N ¼ 2 the quadrature-based moment method
used in the main text is well defined because, by letting the velocity abscissas vary with space and time, the
velocity moments up to third order (2N � 1) can be controlled. In order to achieve a well-defined discrete
Boltzmann equation with oLBM, we must have N P 3 so that moments up to at least second order are con-
trolled [1].21 With N ¼ 3, the quadrature-based moment method controls velocity moments up to fifth order.
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